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It is well known that ascents, descents and plateaux are 
equidistributed over the set of classical Stirling permutations. 
Their common enumerative polynomials are the second-order 
Eulerian polynomials, which have been extensively studied 
by many researchers. This paper is divided into three parts. 
The first part gives a convolution formula for the second-order 
Eulerian polynomials, which simplifies a result of Gessel. As 
an application, a determinantal expression for the second
order Eulerian polynomial is obtained. We then investigate 
a convolution formula of the trivariate second-order Eulerian 
polynomials. Among other things, by introducing three new 
statistics: proper ascent-plateau, improper ascent-plateau and 
trace, we discover that a six-variable enumerative polyno
mial over restricted Stirling permutations equals a six-variable 
Eulerian-type polynomial over signed permutations. By spe
cial parametrizations, we make use of Stirling permutations 
to give a unified interpretation of the (p, q)-Eulerian polyno
mials and derangement polynomials of types A and B. The 
third part presents a box sorting algorithm which leads to a 
bijection between the terms in the expansion of (cD)nc and or
dered weak set partitions, where c is a smooth function in the 
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indeterminate x and D is the derivative with respect to x. Us
ing a map from ordered weak set partitions to standard Young 
tableaux, we find an expansion of (cD)nc in terms of standard 
Young tableaux. Combining this with context-free grammars, 
we provide three new interpretations of the second-order Eu
lerian polynomials.

© 2025 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.
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1. Introduction

Many polynomials can be generated by successive differentiations of a given base 
function, see [29, Section 4.3] for a survey. Here we provide two such polynomials. The 
Eulerian polynomials An(x) first appeared in the following series summation or successive 
differentiation:

∞ ∑︂
k=0

knxk =
(︃
x

d 
dx

)︃n 1 
1 − x

= An(x) 
(1 − x)n+1 . (1)

The second-order Eulerian polynomials Cn(x) can be defined by

∞ ∑︂
k=0

{︃
n + k

k

}︃
xk =

(︃
x 

1 − x

d 
dx

)︃n
x 

1 − x
= Cn(x) 

(1 − x)2n+1 , (2)

where 
{︁
n
k

}︁
is the Stirling number of the second kind, i.e., the number of partitions of 

[n] := {1, 2, . . . , n} into exactly k blocks, see [9,11]. The polynomials An(x) and Cn(x)
share several similar properties, including recursions [21,23,33], real-rootedness [25,35] 
and combinatorial expansions [14,41]. For example, we have



S.-M. Ma et al. / Journal of Combinatorial Theory, Series A 220 (2026) 106132 3

An(x) = nxAn−1(x) + x(1 − x) d 
dxAn−1(x), A0(x) = 1;

Cn+1(x) = (2n + 1)xCn(x) + x(1 − x) d 
dxCn(x), C0(x) = 1. (3)

This paper is motivated by the following problem.

Problem 1. Whether there exists a function fn(x1, x2, . . . , xn) such that

Cn(x) = fn (A1(x), A2(x), . . . , An(x)) .

For m = (m1,m2, . . . ,mn) ∈ Nn, let n = {1m1 , 2m2 , . . . , nmn} be a multiset, where 
the element i appears mi times. A multipermutation of n is a sequence of its elements. 
For any word over n, we say that the reduced form of w, written as red (w), is equal to 
the word obtained by replacing each of the occurrences of the i-th smallest number in 
w with the number i. Denote by 𝔖n the set of multipermutations of n. We say that a 
multipermutation σ of n is a Stirling permutation if for each i, 1 ⩽ i ⩽ n, all letters 
occurring between the two occurrences of i are at least i. Denote by 𝒬n the set of Stirling 
permutations of n. When m1 = · · · = mn = 1, the set 𝒬n reduces to the symmetric group 
𝔖n, i.e., the set of permutations of [n]. When m1 = m2 = · · · = mn = 2, the set 𝒬n

reduces to the set 𝒬n (the set of classical Stirling permutations), which is defined by 
Gessel-Stanley [23]. Except where explicitly stated, we always assume that all Stirling 
permutations belong to 𝒬n. For example, 𝒬1 = {11} and 𝒬2 = {1122, 1221, 2211}.

For σ ∈ 𝒬n, any entry σi is called an ascent (resp. descent, plateau) if σi < σi+1
(resp. σi > σi+1, σi = σi+1), where i ∈ {0, 1, 2, . . . ,m1 + m2 + · · · + mn} and we set 
σ0 = σm1+m2+···+mn+1 = 0. Let asc (σ) (resp. des (σ), plat (σ)) be the number of ascents 
(resp. descents, plateaux) of σ. The Eulerian polynomials can also be defined by

An(x) =
∑︂

π∈𝔖n

xdes (π) =
∑︂

π∈𝔖n

xasc (π) =
n ∑︂

k=0

⟨︃
n

k

⟩︃
xk,

where 
⟨︁
n
k

⟩︁
are known as the Eulerian numbers. It is well known that An(x) is symmetric, 

see [38] for instance. When σ ∈ 𝒬n, we always set σ0 = σ2n+1 = 0. Gessel-Stanley [23] 
found that

Cn(x) =
∑︂

σ∈𝒬n

xdes (σ) =
∑︂

σ∈𝒬n

xasc (σ).

The trivariate second-order Eulerian polynomials are defined by

Cn(x, y, z) =
∑︂

σ∈𝒬n

xasc (σ)ydes (σ)zplat (σ).

The first few Cn(x, y, z) are listed as follows:
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C1(x, y, z) = xyz, C2(x, y, z) = xyz(yz + xy + xz),

C3(x, y, z) = xyz(x2y2 + x2z2 + y2z2 + 4xy2z + 4x2yz + 4xyz2).

Set C0(x, y, z) = x. Dumont [19, p. 317] discovered that

Cn+1(x, y, z) = xyz

(︃
∂

∂x
+ ∂

∂y
+ ∂

∂z

)︃
Cn(x, y, z), (4)

which implies that the polynomials Cn(x, y, z) are symmetric in the variables x, y and 
z. It was independently discovered by Bóna [4] that Cn(x) =

∑︁
σ∈𝒬n

xplat (σ). In recent 
years, there has been considerable study on Stirling permutations and their variants, 
see [8,15,22,25,30,33,34,36,38,39].

Note that each nonempty Stirling permutation σ ∈ 𝒬n can be represented as 
σ′1σ′′1σ′′′, where σ′, σ′′ and σ′′′ are all Stirling permutations (may be empty). Clearly, 
the descent number of σ is the sum of the descent numbers of σ′, σ′′ and σ′′′, unless 
σ′′′ is empty in which case σ has an additional descent. Motivated by this observation, 
Gessel [24] found that

d 
dzC(x; z) = C2(x; z)(C(x; z) + x− 1),

where C(x; z) =
∑︁∞

n=0 Cn(x) z
n

n! . Extracting the coefficient of z
n

n! , one can easily deduce 
that

Cn+1(x) = x
n ∑︂

k=0

(︃
n

k

)︃
Ck(x)Cn−k(x)+

n−1∑︂
k=0 

(︃
n

k

)︃⎛⎝ k∑︂
j=0 

(︃
k

j

)︃
Cj(x)Ck−j(x)

⎞⎠Cn−k(x). (5)

Our point of departure is the following problem.

Problem 2. Whether there is a simplified version of (5)?

A partition of n is a weakly decreasing sequence of nonnegative integers: λ =
(λ1, λ2, . . . , λℓ), where 

∑︁ℓ
i=1 λi = n. Each λi is called a part of λ. If λ is a partition 

of n, then we write λ ⊢ n. We denote by mi the number of parts equal to i. By using 
the multiplicities, we also denote λ by (1m12m2 · · ·nmn). The length of λ, denoted ℓ(λ), 
is the maximum subscript j such that λj > 0. The Ferrers diagram of λ is a graphical 
representation of λ with λi left justified boxes in its i-th row. For a Ferrers diagram 
λ ⊢ n (we will often identify a partition with its Ferrers diagram), a standard Young 
tableau (SYT , for short) of shape λ is a filling of the n boxes of λ with the integers in 
[n] such that each of those integers is used exactly once, and all rows and columns are 
increasing (from left to right, and from bottom to top, respectively), and we number its 
rows starting from the bottom and going above. See [1] for instance.
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Let SYTλ be the set of standard Young tableaux of shape λ. Set SYT (n) =⋃︁
λ⊢n SYTλ. The descent set for T ∈ SYT (n) is defined by

Des(T ) = {i | i + 1 appears in an upper row of T than i, where 1 ⩽ i ⩽ n− 1}.

Denote by #V the cardinality of a set V . Let des (T ) = # Des(T ). The Robinson
Schensted correspondence is a bijection from permutations to pairs of standard Young 
tableaux of the same shape. This correspondence and its generalization, the Robinson
Schensted-Knuth correspondence, have become centerpieces of enumerative and algebraic 
combinatorics due to their many applications. Let fλ = # SYTλ. An application of the 
Robinson-Schensted correspondence is given as follows:

An(x) =
∑︂

π∈𝔖n

xdes (π) =
∑︂
λ⊢n

fλ
∑︂

T∈SYTλ

xdes (T )+1, (6)

which has been extended to skew shapes. See [1,28] for instance.
This paper is organized as follows. In the next section, we present a result concerning 

Problem 2. In Section 3, we investigate a convolution formula for the trivariate second
order Eulerian polynomials Cn(x, y, z). A deep connection between signed permutations 
in the hyperoctahedral group and Stirling permutations is established. In particular, we 
introduce three new statistics on Stirling permutations: proper ascent-plateau, improper 
ascent-plateau and trace. A special case of Corollary 18 says that

∑︂
σ∈𝒬(1)

n+1

simpap(σ)tbk2(σ)qtr(σ) = 2n
∑︂

π∈𝔖n

(︃
t + s

2 

)︃fix (π)

qcyc (π),

where 𝒬(1)
n is the set of Stirling permutations over the multiset {1, 2, 2, 3, 3, . . . , n, n}. In 

Section 4, using standard Young tableaux, we provide certain combinatorial expansions 
of the Eulerian polynomials of types A and B as well as the second-order Eulerian 
polynomials. In Theorem 28, we give an affirmative answer to Problem 1, i.e.,

Cn(x) =
∑︂

T∈SYT (n)

n ∏︂
i=1

σi(T )Ai(x)wi(T )
,

where wi(T ) is the number of rows in the standard Young tableau T with i elements and ∏︁n
i=1 σi(T ) is the g-index of T introduced in [26]. See Table 2 for an illustration.

2. Convolution formulas for the second-order Eulerian polynomials

Since des and plat are equidistributed over Stirling permutations in 𝒬n, it is natural 
to count Stirling permutations by the plateau statistic plat . We now present a variant 
of (5).
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Theorem 3. For n ⩾ 1, we have

Cn(x) = nxCn−1(x) +
n−1∑︂
r=1 

(︃
n 

n− r + 1

)︃
Cn−r(x)Cr−1(x).

Proof. Let σ be a Stirling permutation in 𝒬n. Consider a decomposition of σ: iσ′iσ′′, 
where σ′ and σ′′ are both Stirling permutations (may be empty). We distinguish two 
cases:

(i) If σ begins with the plateau ii, i.e. σ′ = ∅, then there are n choices for i. When we 
count the number of plateaux of σ, this case gives the term nxCn−1(x).

(ii) When σ′ ̸= ∅, choose a multiset

{a1, a1, a2, a2, . . . , an−r+1, an−r+1}

in 
(︁

n 
n−r+1

)︁
ways, where 1 ⩽ i = a1 < a2 < · · · < an−r+1 ⩽ n. Let Sn−r be 

the set of Stirling permutations over {a2, a2, a3, a3, . . . , an−r+1, an−r+1}, and let 
σ′ ∈ Sn−r. If we count the number of plateaux of σ′, then Sn−r contributes to the 
term Cn−r(x). Let Sr−1 be the set of Stirling permutations over {1, 1, 2, 2, . . . , n, n}\
{a1, a1, a2, a2, . . . , an−r+1, an−r+1}. Then red (σ′′) ∈ 𝒬r−1 and Sr−1 contributes to 
the term Cr−1(x).

The aforementioned two cases exhaust all the possibilities, and this completes the 
proof. □

Let an = 2nCn(1/2). It follows from Theorem 3 that

an = nan−1 + 2
n−1∑︂
r=1 

(︃
n 

n− r + 1

)︃
an−rar−1, a0 = a1 = 1.

It should be noted that an counts series-reduced rooted trees with n+1 labeled leaves [44, 
A000311]. The first few an are 1, 4, 26, 236, 2752. Very recently, Bitonti-Deb-Sokal [2] 
obtained a continued fraction expression of an.

Lemma 4 ([35]). Let F (x) = a(x)f(x) + b(x) d 
dxf(x), where a(x) and b(x) are two real 

polynomials. Both f(x) and F (x) have only positive leading coefficients, and degF =
deg f or deg f + 1. If f(x) has only real zeros and b(r) ⩽ 0 whenever f(r) = 0, then 
F (x) has only real zeros.

Combining (3) and Lemma 4, one can obtain that the zeros of Cn−1(x) are real and 
simple, which separate those of Cn(x) for n ⩾ 2. Comparing (3) with Theorem 3, we 
find that
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n−1∑︂
r=1 

(︃
n 

n− r + 1

)︃
Cn−r(x)Cr−1(x) = (n− 1)xCn−1(x) + x(1 − x) d 

dxCn−1(x),

Note that

nCn−1(x) +
n−1∑︂
r=1 

(︃
n 

n− r + 1

)︃
Cn−r(x)Cr−1(x)

= nCn−1(x) +
n−1∑︂
r=1 

(︃
n 

r − 1

)︃
Cn−r(x)Cr−1(x)

= nCn−1(x) +
n−2∑︂
k=0 

(︃
n

k

)︃
Cn−k−1(x)Ck(x)

=
n−1∑︂
k=0 

(︃
n

k

)︃
Ck(x)Cn−k−1(x).

Then

n−1∑︂
k=0 

(︃
n

k

)︃
Ck(x)Cn−k−1(x) = (n + (n− 1)x)Cn−1(x) + x(1 − x) d 

dxCn−1(x).

Therefore, by Lemma 4, we immediately get the following result.

Proposition 5. The binomial convolutions 
∑︁n−1

k=0
(︁
n
k

)︁
Ck(x)Cn−k−1(x) have only real zeros.

The n× n lower Hessenberg matrix Hn is defined as follows:

Hn =

⎛⎜⎜⎜⎜⎜⎜⎝

h11 h12 0 · · · 0 0
h21 h22 h23 · · · 0 0
h31 h32 h33 · · · 0 0
...

...
...

. . .
...

...
hn−1,1 hn−1,2 hn−1,3 · · · hn−1,n−1 hn−1,n
hn,1 hn,2 hn,3 · · · hn,n−1 hn,n

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where hij = 0 if j > i + 1. Hessenberg matrices frequently appear in numerical analy
sis [10,32]. Setting H0 = 1, Cahill et al. [10] gave a recursion for the determinant of the 
matrix Hn as follows:

detHn = hn,n detHn−1 +
n−1∑︂
r=1 

⎛⎝(−1)n−rhn,r

n−1∏︂
j=r 

hj,j+1 detHr−1

⎞⎠ . (7)

By induction, comparing (7) and Theorem 3, we discover the following result.
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Theorem 6. For any n ⩾ 1, the polynomial Cn(x) can be expressed as the following lower 
Hessenberg determinant of order n:

Cn(x) =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

x −1 0 · · · 0 0
C1(x)

(︁2
1
)︁
x −1 · · · 0 0

C2(x)
(︁3
1
)︁
C1(x)

(︁3
2
)︁
x · · · 0 0

...
...

...
. . .

...
...

Cn−2(x)
(︁
n−1

1 
)︁
Cn−3(x)

(︁
n−1

2 
)︁
Cn−4(x) · · ·

(︁
n−1
n−2

)︁
x −1

Cn−1(x)
(︁
n
1 
)︁
Cn−2(x)

(︁
n
2 
)︁
Cn−3(x) · · ·

(︁
n 

n−2
)︁
C1(x)

(︁
n 

n−1
)︁
x

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
n×n

.

When n = 4, from Theorem 6, we see that

C4(x) =

⃓⃓⃓⃓
⃓⃓⃓ x −1 0 0

x 2x −1 0
x + 2x2 3x 3x −1

x + 8x2 + 6x3 4x + 8x2 6x 4x

⃓⃓⃓⃓
⃓⃓⃓ = x + 22x2 + 58x3 + 24x4.

3. A class of restricted Stirling permutations and signed permutations

3.1. Context-free grammars and a new differential operator method

A context-free grammar (also known as Chen’s grammar [12,20,38]) G over an alpha
bet V is defined as a set of substitution rules replacing a letter in V by a formal function 
over V . The formal derivative DG with respect to G satisfies the derivation rules:

DG(u + v) = DG(u) + DG(v), DG(uv) = DG(u)v + uDG(v).

So the Leibniz rule holds:

Dn
G(uv) =

n ∑︂
k=0

(︃
n

k

)︃
Dk

G(u)Dn−k
G (v).

In [20], Dumont obtained the grammar for Eulerian polynomials by using a grammat
ical labeling for circular permutations.

Proposition 7 ([20, Section   2.1]). Let G = {a → ab, b → ab}. For any n ⩾ 1, one has

Dn
G(a) = Dn

G(b) = an+1An

(︃
b 
a

)︃
.

In the following three examples, we introduce a new differential operator method, 
which will help us to find grammars. We first establish a connection between (1) and 
Proposition 7.
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Example 8. Setting

T = x
d 
dx, a = 1 

1 − x
and b = x 

1 − x
,

we obtain T (a) = T (b) = ab. By (1), we have Tn(a) = Dn
G(a), where G = {a → ab, b →

ab}.

The grammar for the second-order Eulerian polynomials was first discovered by Chen
Fu [13] by using a grammatical labeling for Stirling permutations. Here we give a formal 
derivation.

Example 9. Setting

T = x 
1 − x

d 
dx, a = x 

1 − x
, b = 1 

1 − x
,

we get T (a) = ab2 and T (b) = ab2. Let G = {a → ab2, b → ab2}. It follows from (2)
that

Dn
G(a) = Tn(a) = b2n+1Cn

(︂a
b 

)︂
.

Following [29, p. 29], one has

(︃
d 
dy

)︃n ey

1 − e2y = eyBn(e2y) 
(1 − e2y)n+1 , (8)

where Bn(x) are the type B Eulerian polynomials. Note that d 
dy = dx

dy 
d 
dx and x = ey is 

the solution of x = dx
dy . It follows from (8) that

(︃
x

d 
dx

)︃n
x 

1 − x2 = xBn(x2) 
(1 − x2)n+1 . (9)

We now deduce the grammar for the type B Eulerian polynomials.

Example 10. Setting

T = x
d 
dx, a = x √

1 − x2
and b = 1 √

1 − x2
,

we get T (a) = ab2, T (b) = a2b. Let G = {a → ab2, b → a2b}. It follows from (9) that

Dn
G(ab) = Tn(ab) = ab2n+1Bn

(︃
a2

b2

)︃
.
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In equivalent forms, Dumont [19], Haglund-Visontai [25], Chen-Hao-Yang [16] and 
Ma-Ma-Yeh [38] all showed that

Dn
G(x) = Dn

G(y) = Dn
G(z) = Cn(x, y, z), (10)

where G = {x → xyz, y → xyz, z → xyz}. By the change of grammar u = x+y+z, v =
xy+yz+zx and w = xyz, it is easy to verify that DG(u) = 3w, DG(v) = 2uw, DG(w) =
vw. So we get a grammar H = {w → vw, u → 3w, v → 2uw}. Recently, Chen-Fu [14] 
discovered that for any n ⩾ 1, one has

Cn(x, y, z) = Dn
G(x) = Dn−1

H (w) =
∑︂

i+2j+3k=2n+1

γn,i,j,ku
ivjwk,

where the coefficient γn,i,j,k equals the number of 0-1-2-3 increasing plane trees on [n]
with k leaves, j degree one vertices and i degree two vertices. Substituting u → x + y +
z, v → xy + yz + zx and w → xyz, one has

Cn(x, y, z) =
∑︂

i+2j+3k=2n+1

γn,i,j,k(x + y + z)i(xy + yz + zx)j(xyz)k,

which has recently been generalized to a seventeen-variable polynomial [41, Theorem 15].

3.2. A class of restricted Stirling permutations

The following fundamental result will be used in our discussion.

Lemma 11. Let G = {x → xyz, y → xyz, z → xyz}. Then we have

Dn
G(yz) =

∑︂
σ∈𝒬(1)

n+1

xplat (σ)ydes (σ)zasc (σ), (11)

where 𝒬(1)
n+1 is the set of Stirling permutations over the multiset {1, 2, 2, 3, 3, . . . , n, n, n+

1, n+1}, i.e., the element 1 appears only once and the other elements appear two times.

Proof. We first introduce a grammatical labeling for σ ∈ 𝒬(1)
n+1 as follows:

(L1) If σi is a plateau, then put a superscript label x right after σi.
(L2) If σi is a descent, then put a superscript label y right after σi;
(L3) If σi is an ascent, then put a superscript label z right after σi;

The weight of σ is given by w(σ) = xplat (σ)ydes (σ)zasc (σ). When n = 0, we have 𝒬(1)
1 =

{z1y}, which corresponds to yz. When n = 1, we have 𝒬(1)
2 = {z1z2x2y,z 2x2y1y}, which 

corresponds to DG(yz) = x(y2z + yz2). When n = 2, the weighted elements in 𝒬(1)
3 can 

be listed as follows:
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z1z2x2z3x3y, z1z2z3x3y2y, z1z3x3y2x2y, z3x3y1z2x2y,
z2x2y1z3x3y, z2x2z3x3y1y, z2z3x3y2y1y, z3x3y2x2y1y.

The sum of weights of these elements is given as follows:

D2
G(yz) = x2y3z + 4x2y2z2 + xy3z2 + x2yz3 + xy2z3.

So the result holds for n = 0, 1, 2. We proceed by induction. Suppose we get all labeled 
Stirling permutations in 𝒬(1)

n−1, where n ⩾ 3. Let σ′ be obtained from σ ∈ 𝒬(1)
n−1 by 

inserting the pair nn. Then the changes of labelings are illustrated as follows:

· · ·σx
i σi+1 · · · ↦→ · · ·σz

i n
xnyσi+1 · · · ;

· · ·σy
i σi+1 · · · ↦→ · · ·σz

i n
xnyσi+1 · · · ;

· · ·σz
i σi+1 · · · ↦→ · · ·σz

i n
xnyσi+1 · · · .

In each case, the insertion of the string nn corresponds to the operator DG. By induction, 
the action of the formal derivative DG on the set of weighted Stirling permutations in 
𝒬(1)

n−1 gives the set of weighted Stirling permutations in 𝒬(1)
n , and so (11) holds. □

Define

En(x, y, z) =
∑︂

σ∈𝒬(1)
n

xplat (σ)ydes (σ)zasc (σ).

By (11), we see that

En+1(x, y, z) = xyz

(︃
∂

∂x
+ ∂

∂y
+ ∂

∂z

)︃
En(x, y, z), E1(x, y, z) = yz. (12)

Let En(x, y, z) =
∑︁

i⩾1,j⩾1 En,i,jx
iyjz2n−i−j for n ⩾ 2. It follows from (12) that

En+1,i,j = iEn,i,j−1 + jEn,i−1,j + (2n− i− j + 2)En,i−1,j−1, (13)

with E1,0,1 = 1 and E1,i,j = 0 for all (i, j) ̸= (0, 1). By (10), we find that

Cn+1(x, y, z) = Dn
G(xyz) =

n ∑︂
k=0

(︃
n

k

)︃
Dk

G(x)Dn−k
G (yz) =

n ∑︂
k=0

(︃
n

k

)︃
Ck(x, y, z)Dn−k

G (yz).

So the following result is immediate.

Theorem 12. We have

Cn+1(x, y, z) =
n ∑︂

k=0

(︃
n

k

)︃
Ck(x, y, z)En−k+1(x, y, z).
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It is routine to check that #𝒬(1)
n+1 = En+1(1, 1, 1) = (2n)!!. Let ±[n] = [n] ∪

{1, 2, . . . , n}, where we denote by i the negative element −i. The hyperoctahedral group 
𝔖B

n is the group of signed permutations on ±[n] with the property that π
(︁
i
)︁

= −π(i)
for all i ∈ [n]. It is well known that #𝔖B

n = (2n)!! (see [5,41]). Therefore,

#𝒬(1)
n+1 = #𝔖B

n .

A natural idea is therefore to investigate the connections between 𝒬(1)
n+1 and 𝔖B

n .

3.3. Six-variable polynomials over restricted Stirling permutations

Let w = w1w2 · · ·wn be a word of length n, where wi are all integers. Except where 
explicitly stated, we always assume that w0 = wn+1 = 0. Let

Ap(w) = {wi | wi−1 < wi = wi+1 & 2 ⩽ i ⩽ n− 1},

Lap(w) = {wi | wi−1 < wi = wi+1 & 1 ⩽ i ⩽ n− 1}

be the sets of ascent-plateaux and left ascent-plateaux of w, respectively. Let ap (w) and 
lap (w) be the numbers of ascent-plateaux and left ascent-plateaux of w, respectively. 
The ascent-plateau polynomials and the left ascent-plateau polynomials on Stirling per
mutations are respectively defined by

Mn(x) =
∑︂

σ∈𝒬n

xap (σ), Wn(x) =
∑︂

σ∈𝒬n

xlap (σ).

From [37, Proposition 1], we see that

2nAn(x) =
n ∑︂

i=0 

(︃
n

i 

)︃
Wi(x)Wn−i(x), Bn(x) =

n ∑︂
i=0 

(︃
n

i 

)︃
Mi(x)Wn−i(x),

where Bn(x) is the type B Eulerian polynomial over the hyperoctahedral group 𝔖B
n .

Let π = π(1)π(2) · · ·π(n) ∈ 𝔖B
n . It should be noted that the n letters appearing in 

the cycle notation of π are the letters π(1), π(2), . . . , π(n). We say that i is an excedance 
(resp. anti-excedance, fixed point, singleton) of π if π(|π(i)|) > π(i) (resp. π(|π(i)|) < π(i), 
π(i) = i, π(i) = i). Let exc (π) (resp. aexc (π), fix (π), single (π), neg (π), cyc (π)) be the 
number of excedances (resp. anti-excedances, fixed points, singletons, negative entries, 
cycles) of π.

Example 13. The signed permutation π = 683157249 can be written as (9)(3)(1, 6, 7, 2, 8, 
4)(5). So π has two singletons 9 and 3, one fixed point 5, 3 excedances, 3 anti-excedances, 
3 negative entries and 4 cycles.
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According to [5, Corollary 3.16], we have

Bn(x) =
∑︂

π∈𝔖B
n

xexc (σ)+single (σ) =
∑︂

π∈𝔖B
n

xexc (σ)+fix (σ).

Lemma 14 ([40, Lemma   5.3]). Let p and q be two given parameters. If

G = {I → qI(t+ sp), s → (1+ p)xy, t → (1+ p)xy, x → (1+ p)xy, y → (1+ p)xy}, (14)

then we have

Dn
G(I) = I

∑︂
σ∈𝔖B

n

xexc (σ)yaexc (σ)ssingle (σ)tfix (σ)pneg (σ)qcyc (σ).

For a word w = w1w2 · · ·wn, we have the following definitions:

• An even indexed entry of w is an element wi such that the first appearance of wi

(when we read w from left to right) occurs at an even position;
• A right-to-left minimum of w is an element wi such that wi ⩽ wj for every j ∈
{i + 1, i + 2, . . . , n} and wi is the first appearance from left to right;

• A left-to-right minimum of w is an element wi such that wi < wj for every j ∈
{1, 2, . . . , i− 1} or i = 1;

• A block of w is defined as a maximal substring that begins with a left-to-right mini
mum and contains no other left-to-right minimum.

Let Even(w) and Rlmin(w) be the sets of even indexed entries and right-to-left minima 
of w, respectively. For instance,

Even(4554122377366) = {2, 3, 5, 6}, Rlmin(4554122377366) = {1, 2, 3, 6}.

It is easily derived by induction that w has a unique decomposition as a sequence of 
blocks. For σ ∈ 𝒬(1)

n , there exists one block beginning with the element 1. For exam
ple, the block decomposition of 88346643991255277 is given by [88][34664399][1255277]. 
We use even (σ), rlmin(σ), lrmin(σ) and bk2(σ) to denote the numbers of even indexed 
entries, right-to-left minima, left-to-right minima and blocks of size exactly 2 of σ, re
spectively. When σi and σi+1 constitute a block with size exactly 2, it is clear that 
σi = σi+1. For example, bk2(33221) = 2. The block statistic has been studied by Kuba
Panholzer [33] and Remmel-Wilson [42].

We now introduce three new statistics.

Definition 15. For σ ∈ 𝒬(1)
n , we say that an entry σi is

• a proper ascent-plateau if σi is an ascent plateau, but it is not a right-to-left minimum;
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• an improper ascent-plateau if σi ∈ Ap(σ) ∩ Rlmin(σ);
• a trace if there exists 2 ⩽ k ⩽ n, when the subword of σ restricted to {1, 2, 2, . . . , k, k}, 
σi is an improper ascent-plateau of this subword or σi is the second entry that appears 
in a block of size exactly 2.

Let Pap(σ), Impap(σ) and Trace(σ) be the sets of proper ascent-plateaux, improper 
ascent-plateaux and traces of σ, respectively. For instance,

Pap(884554122377366) = {5, 7},

Impap(884554122377366) = {2, 6},

Trace(884554122377366) = {2, 3, 4, 6, 8}.

It is clear that

AP(σ) = Pap(σ) ∪ Impap(σ), Pap(σ) ∩ Impap(σ) = ∅.

We use pap(σ) and impap(σ) to denote the numbers of proper and improper ascent
plateaux of σ, respectively. Hence ap (σ) = pap(σ) + impap(σ). The complement index 
of ascent-plateaux of σ is defined by

cap(σ) = n− pap(σ) − impap(σ) − bk2(σ) = n− ap (σ) − bk2(σ).

We can now conclude the main result of this section.

Theorem 16. We have∑︂
σ∈𝒬(1)

n+1

xpap(σ)ycap(σ)simpap(σ)tbk2(σ)peven (π)qtr(σ)

=
∑︂

π∈𝔖B
n

xexc (π)yaexc (π)ssingle (π)tfix (π)pneg (π)qcyc (π).

Proof. Recall that 𝒬(1)
n is the set of Stirling permutations over the multiset {1, 2, 2, 3, 3, 

. . . , n, n}. A grammatical labeling for σ ∈ 𝒬(1)
n is given as follows:

(L1) we use the superscript I to mark the first position (just before σ1) and the last 

position (at the end of σ), and denoted by 
I⏟ ⏞⏞ ⏟

σ1σ2 · · ·σ2n−1;
(L2) if σi is a proper ascent-plateau, then we label the two positions just before and 

right after σi by a subscript label x;
(L3) if σi is an improper ascent-plateau, then we label the two positions just before and 

right after σi by a subscript label s;
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(L4) if σi and σi+1 constitute a block with size exactly 2, then we label the two positions 
just before and right after σi+1 by a subscript label t;

(L5) except the above labeled positions, there are still even number of positions, and we 
use a y to label pairwise nearest elements from left to right;

(L6) we attach a superscript label p to every even indexed entry;
(L7) we attach a subscript label q to each trace.

With this labeling, the weight of σ is defined as the product of the labels, i.e.,

w(σ) = xpap(σ)ycap(σ)simpap(σ)tbk2(σ)peven (π)qtr(σ).

For example, the grammatical labeling for 884554122377366 is given as follows:

I⏟ ⏞⏞ ⏟
8 8q⏞⏟⏟⏞

t 

4 5p⏞⏟⏟⏞
x 

5
y⏟⏞⏞⏟
4q 1 2pq⏞⏟⏟⏞

s 

2
y⏟ ⏞⏞ ⏟

3pq 7 ⏞⏟⏟⏞
x 

7 3 6pq⏞⏟⏟⏞
s 

6 .

We proceed by induction. The element in 𝒬(1)
1 can be labeled as 

I⏟⏞⏞⏟
1 . The labeled 

elements in 𝒬(1)
2 can be listed as follows:

I⏟ ⏞⏞ ⏟
1 2pq⏞⏟⏟⏞

s 

2, 
I⏟ ⏞⏞ ⏟

2 2q⏞⏟⏟⏞
t 

1 .

Let G be given by (14). Note that DG(I) = qI(t+ sp). Hence the result holds for n = 1. 
Suppose we get all labeled Stirling permutations in σ ∈ 𝒬(1)

n−1, where n ⩾ 2. Let ˆ︁σ
be obtained from σ by inserting the string nn. There are six possibilities to label the 
inserted string and to relabel some elements of σ:

(c1) by the definition of trace, we never need to relabel the subscript label q.
(c2) if nn is inserted immediately before or right after σ, then the changes of labelings 

are illustrated as follows:

I⏟⏞⏞⏟
σ →

I⏟ ⏞⏞ ⏟
n nq⏞⏟⏟⏞

t 

σ, 
I⏟⏞⏞⏟
σ →

I⏟ ⏞⏞ ⏟
σ np

q⏞⏟⏟⏞
s 

n .

(c3) if nn is inserted immediately before or right after an element with a label t. Since 
ii forms a block of size 2 which means the entries before ii are all bigger than i, 
thus the first i located at an odd position. The changes of labelings are illustrated 
as follows:
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· · · i iq⏞⏟⏟⏞
t 

· · · → · · · i np⏞⏟⏟⏞
x 

n iq⏞⏟⏟⏞
y

· · · , · · · i iq⏞⏟⏟⏞
t 

· · · → · · · · · · i
y⏟ ⏞⏞ ⏟

iq n ⏞⏟⏟⏞
x 

n · · · · · · .

(c4) if nn is inserted immediately before or right after an element with label s, then the 
changes of labelings are illustrated as follows:

· · · ipq⏞⏟⏟⏞
s 

i · · · → · · · np⏞⏟⏟⏞
x 

n

y⏟⏞⏞⏟
ipq i · · · , · · · ipq⏞⏟⏟⏞

s 

i · · · → · · ·
y⏟ ⏞⏞ ⏟

ipq n ⏞⏟⏟⏞
x 

n i · · · .

(c5) if nn is inserted immediately before or right after an element with label x, then the 
changes of labelings are illustrated as follows:

· · · ip⏞⏟⏟⏞
x 

i · · · → · · · np⏞⏟⏟⏞
x 

n

y⏟⏞⏞⏟
ip i · · · , · · · ip⏞⏟⏟⏞

x 
i · · · → · · ·

y⏟ ⏞⏞ ⏟
ip n ⏞⏟⏟⏞

x 
n i · · · ;

· · · i ⏞⏟⏟⏞
x 

i · · · → · · · n ⏞⏟⏟⏞
x 

n

y⏟⏞⏞⏟
i i · · · , · · · i ⏞⏟⏟⏞

x 
i · · · → · · ·

y⏟ ⏞⏞ ⏟
i np⏞⏟⏟⏞

x 
n i · · · .

(c6) if nn is inserted into either position of a pair labeled by y, then the first n always get 
a label x and there still two positions get a label y. For each pair of positions labeled 
by y, there is an odd number of entries between them. So we get the substitution 
rule y → (1 + p)xy.

In each case, the insertion of nn corresponds to one substitution rule in G. Therefore, 
the action of DG on the set of weighted Stirling permutations in 𝒬(1)

n−1 gives the set of 
weighted Stirling permutations in 𝒬(1)

n . So we complete the proof by Lemma 14. □
We now collect several well-studied Eulerian-type polynomials. Let

Bn(x, p, q) =
∑︂

π∈𝔖B
n

xexc (π)+single (π)pneg (π)qcyc (π)

be a (p, q)-Eulerian polynomial of type B. The types A and B derangement polynomials 
are respectively defined by

dn(x) =
∑︂

π∈𝒟n

xexc (π), dBn (x) =
∑︂

π∈𝒟B
n

xexc (π),

where 𝒟n = {π ∈ 𝔖n | fix (π) = 0} and 𝒟B
n = {π ∈ 𝔖B

n | fix (π) = 0}. These polynomials 
have been extensively studied. See [6,17,27,40] for recent progress.
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Corollary 17. We have

Bn(x, p, q) =
∑︂

σ∈𝒬(1)
n+1

xap(σ)peven (π)qtr(σ),

dn(x) =
∑︂

π∈𝒬(1)
n+1

bk2(π)=0
even (π)=0

xpap(π), dBn (x) =
∑︂

π∈𝒬(1)
n+1

bk2(π)=0

xpap(π).

The (p, q)-Eulerian polynomials An(x, p, q) are defined by

An(x, p, q) =
∑︂

π∈𝔖n

xexc (π)pfix (π)qcyc (π).

Combining [40, Theorem 5.2] and Theorem 16, we get the following result.

Corollary 18. We have

∑︂
σ∈𝒬(1)

n+1

xpap(σ)ycap(σ)simpap(σ)tbk2(σ)peven (π)qtr(σ) = (1 + p)nynAn

(︃
x

y
,
t + sp 
y + py

, q

)︃
.

In particular, we have∑︂
σ∈𝒬(1)

n+1

simpap(σ)tbk2(σ) =
∑︂

π∈𝔖n

(t + s)fix (π)2n−fix (π).

4. Box sorting algorithm and standard Young tableaux

4.1. Preliminaries

The Weyl algebra W is the unital algebra generated by two symbols D and U satisfying 
the commutation relation DU −UD = I, where I is the identity which we identify with 
“1''. Any word w in the letters U,D can always be brought into normal ordered form 
where all letters D stand to the right of all the letters U . A famous example of W is 
given by the substitutions: D → d 

dx , U → x. Except as otherwise indicated, we always 
let D = d 

dx . As early as 1823, Scherk [3, Appendix A] found that

(xD)n =
n ∑︂

k=0

{︃
n

k

}︃
xkDk. (15)

According to [3, Proposition A.2], one has

(exD)n = enx
n ∑︂

k=0

[︃
n

k

]︃
Dk,
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where 
[︁
n
k

]︁
is the (signless) Stirling number of the first kind, i.e., the number of permu

tations in 𝔖n with k cycles. Many generalizations of (15) occur naturally in quantum 
physics, combinatorics and algebra. The reader is referred to [43] for a survey of this 
topic.

Throughout this paper, we always let c := c(x) and f := f(x) be two smooth functions 
in the indeterminate x. We adopt the convention that ck = Dkc and fk = Dkf for k ⩾ 0. 
Set f0 = f and c0 = c, where D = d 

dx . The first few (cD)nf are given as follows:

(cD)f = (c)f1, (cD)2f = (cc1)f1 + (c2)f2,

(cD)3f = (cc21 + c2c2)f1 + (3c2c1)f2 + (c3)f3,

(cD)4f = (cc31 + 4c2c1c2 + c3c3)f1 + (7c2c21 + 4c3c2)f2 + (6c3c1)f3 + (c4)f4.

For n ⩾ 1, we define

(cD)nf =
n ∑︂

k=1

Fn,kfk. (16)

Note that Fn,k = Fn,k(c, c1, . . . , cn−k) is a function with variables c, c1, . . . , cn−k. In 
particular, F1,1 = c, F2,1 = cc1 and F2,2 = c2. Clearly, Fn+1,1 = cDFn,1, Fn,n = cn and 
for 2 ⩽ k ⩽ n, we have the recurrence relation

Fn+1,k = cFn,k−1 + cDFn,k.

By induction, Comtet [18] found an explicit formula of Fn,k. Recently, Briand-Lopes
Rosas [7] gave a survey of the combinatorial properties of Fn,k, which can be summarized 
as follows.

Proposition 19 ([7]). Let Fn,k be defined by (16). There exist positive integers a(n, λ)
such that

Fn,k =
∑︂

λ⊢n−k

a(n, λ)cn−ℓ(λ)cλ,

where λ runs over all partitions of n − k. The Stirling numbers of the first and second 
kinds, and the Eulerian numbers can be respectively expressed as follows:[︃

n

k

]︃
=

∑︂
λ⊢n−k

a(n, λ), 
{︃
n

k

}︃
= a(n, 1n−k), 

⟨︃
n

k

⟩︃
=

∑︂
ℓ(λ)=n−k

a(n, λ).

In [26], Han-Ma first gave a simple proof of Comtet’s formula via inversion sequences, 
and then introduced k-Young tableaux and their g-indices. Using the indispensable k
Young tableaux, Han-Ma obtained a unified combinatorial interpretation of Eulerian 
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1
0 1

→
2
1
0 1 2

+ 
2
1 2
0 1

. 

Fig. 1. An illustration of the change of weights: cc1 → c2c2 + cc21. 

polynomials and second-order Eulerian polynomials. In practice, however, it seems to be 
difficult to understand the definition of g-index (see [26, Definition 2.5, Lemma 3.1]). In 
order to clarify the nature of g-index, we shall introduce box sorting algorithm in the 
next subsection.

4.2. Box sorting algorithm and the nature of g-index

Rota [31] once said ``I will tell you shamelessly what my bottom line is: It is placing 
balls into boxes''. As discussed before, we always let D = d 

dx and c = c(x). In order to 
study the powers of cD, we shall introduce the box sorting algorithm.

An ordered weak set partition of [n] is a list of pairwise disjoint subsets (maybe empty) 
of [n] such that the union of these subsets is [n]. These subsets are called the parts of 
the partition. A weak composition α of an integer n, denoted by α |= n, with m parts 
is a way of writing n as the sum of any sequence α = (α1, α2, . . . , αm) of nonnegative 
integers. For α |= n, the Young weak composition diagram of α, also denoted by α, is 
the left-justified array of n boxes with αi boxes in the i-th row. We follow the French 
convention, which means that we number the rows from bottom to top, and the columns 
from left to right. The box in the i-th row and j-th column is denoted by the pair 
(i, j). A Young weak composition tableau (YWCT , for short) of shape α is obtained by 
placing the integers {1, 2, . . . , n} into n boxes of the diagram such that each of those 
integers is used exactly once. We will often identify an ordered weak set partition with 
the corresponding YWCT . It should be noted that there may be some empty boxes in 
YWCT . In the following discussion, we always put a special column of n + 1 boxes at 
the left of YWCT or SYT , and labeled by 0, 1, 2, . . . , n from bottom to top. See Fig. 1
and Table 1 for instance. 

The following label schema is fundamental.

Label schema. Let p be an ordered weak set partition of [n]. We give a labeling of p as 
follows. Label the i-th subset by the subscript c(i−1), and label a subset with i elements 
by a superscript ci, where i ⩾ 1. Moreover, if the i-th subset is empty, we always label 
it by a superscript c. The weight of p is defined as the product of the superscript labels.

We can rewrite (cD)nc as follows:(︁
c(n)D(n)

)︁ (︁
c(n−1)D(n−1)

)︁
· · ·

(︁
c(2)D(2)

)︁ (︁
c(1)D(1)

)︁
c(0), (17)

where c(0) = c(i) = c and D(i) = D for all i ∈ [n]. A crucial observation is that 
the differential operator D(i) in (17) can only applied to c(k), where 0 ⩽ k ⩽ i − 1. 
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Table 1
ϕ−1(T ) = {p ∈ OWP3 |ϕ(p) = T}, where T ∈ SYT (3).

T
ϕ−1

=⇒ p count

3
2
1
0 1 2 3

=⇒ 3
2
1
0 1 2 3

({1, 2, 3}, {}, {}, {}) 1

3
2
1 2
0 1 3

=⇒ 3
2
1 2
0 1 3

+ 3
2
1 2 3
0 1

({1, 3}, {2}, {}, {}), ({1}, {2, 3}, {}, {}) 2

3
2
1 3
0 1 2

=⇒ 3
2
1 3
0 1 2

+ 3
2 3
1
0 1 2

({1, 2}, {3}, {}, {}), ({1, 2}, {}, {3}, {}) 2

3
2 3
1 2
0 1

=⇒ 3
2 3
1 2
0 1

({1}, {2}, {3}, {}) 1

When n = 1, we have (cD)c =
(︁
c(1)D(1)

)︁
c(0) = cc1. When n = 2, we have (cD)2c =(︁

c(2)D(2)
)︁ (︁

c(1)D(1)
)︁
c(0) = cc21 + c2c2.

Next, we introduce the box sorting algorithm, designed to transform a term in the 
expansion of (17) into an ordered weak set partition, which can also be represented by 
a YWCT . When multiply a new term c(i)D(i), the procedure can be summarized as 
follows:

• When applying D(i) to c(j), it corresponds to the insertion of the element i into the 
box with the subscript c(j);

• Multiplying by c(i) corresponds to the opening of a new empty box {}cc(i) .

We now provide a detailed description of the box sorting algorithm. Start with an 
empty box ({}cc(0)). We proceed as follows:

BS1: When n = 1, we first insert the element 1 to the empty box, which corresponds 
to the operation D(1)(c(0)). We then open a new empty box, which corresponds to 
the multiplication by c(1). Thus we get ({1}c1c(0) , {}

c
c(1)

).
BS2: When n = 2, we distinguish two cases: (i) we first insert the element 2 into the 

first box {1}c1c(0) , which corresponds to apply the operation D(2) to c(0). We then 
open a new empty box, which corresponds to the multiplication by c(2); (ii) We 
first insert the element 2 into the empty box {}cc(1) , which corresponds to apply 
the operation D(2) to c(1). We then open a new empty box, which corresponds to 
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2
1
0 1 2

→ 3
2
1
0 1 2 3

+ 3
2
1 3
0 1 2

+ 3
2 3
1
0 1 2

. 

Fig. 2. The insertions of 3 into ({1, 2}c2
c(0)

, {}c
c(1)

, {}c
c(2)

). 

2
1 2
0 1

→ 3
2
1 2
0 1 3

+ 3
2
1 2 3
0 1

+ 3
2 3
1 2
0 1

. 

Fig. 3. The insertions of 3 into ({1}c1
c(0)

, {2}c1
c(1)

, {}c
c(2)

). 

the multiplication by c(2). Therefore, we get the following correspondence between 
ordered weak set partitions and their weights:

c2c2 ↔ ({1, 2}c2c(0) , {}
c
c(1)

, {}cc(2)), cc21 ↔ ({1}c1c(0) , {2}
c1
c(1)

, {}cc(2)).

The process from BS1 to BS2 can be illustrated by Fig. 1.
BS3: If all of the elements [i − 1] have already been inserted, then we consider the 

insertion of i, where i ⩾ 3. Suppose that we insert the element i into the k-th box, 
which has the label {}cℓc(k−1)

, where 1 ⩽ k ⩽ i. Then this insertion corresponds to 
apply D(i) to c(k−1), and the label of the k-th box becomes {}cℓ+1

c(k−1) . We then open 
a new empty box, which corresponds to the multiplication by c(i). When i = 3, 
see Figs. 2 and 3 for illustrations, where each empty box in the first column of a 
YWCT corresponds to an empty subset. 

Definition 20. Let OWPn denote the collection of ordered weak set partitions of [n] into 
n + 1 blocks B0 ∪B1 ∪ · · · ∪Bn for which the following conditions hold: (a) 1 ∈ B0; (b)
if Bi is nonempty, then its minimum is larger than i, where 1 ⩽ i ⩽ n.

Suppose p ∈ OWPn. It is clear that the (n + 1)-th block Bn must be empty. Denote 
by wi(p) the number of blocks in p with i elements. The weight function of p is defined 
by

w(p) =
n ∏︂

i=0
c
wi(p)
i . (18)

By the box sorting algorithm, we immediately get the following result.

Lemma 21. For n ⩾ 1, we have (cD)nc =
∑︁

p∈OWPn
w(p).
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Suppose T ∈ SYT (n). We define wi(T ) to be the number of rows in T with i elements. 
Let ℓ(λ(T )) be the number of rows of T , where λ is the shape of T . Then ℓ(λ(T )) =∑︁n

i=1 wi(T ) and n =
∑︁n

i=1 iwi(T ). The weight function of T is defined by

w(T ) = cn+1−ℓ(λ(T ))
n ∏︂

i=1
c
wi(T )
i . (19)

Let ϕ be the map from OWPn to SYT (n), which is described as follows:

OS1: For p ∈ OWPn, let Y be the corresponding YWCT . Reorder the left-justified rows 
of Y by their length in decreasing order from the bottom to the top, and delete 
all empty boxes.

OS2: Rearrange the entries in each column in ascending order from the bottom to the 
top.

In view of (18) and (19), we see that for any p ∈ OWPn, one has ϕ(p) ∈ SYT (n) and

w(p) = w (ϕ(p)) . (20)

Definition 22. Suppose T ∈ SYT (n). Let ϕ−1(T ) = {p ∈ OWPn | ϕ(p) = T}. We call 
#ϕ−1(T ) the g-index of T .

Clearly, #ϕ−1(T ) = 1 for T ∈ SYT (1) or T ∈ SYT (2). The correspondence between 
SYT (3) and OWP3 is listed in Table 1. For T ∈ SYT (n), let Ti be the element in SYT (i)
obtained from T by deleting the n− i elements i+ 1, i+ 2, . . . , n. We denote by colk(Ti)
the size of the k-th column of Ti.

Theorem 23. For T ∈ SYT (n), the g-index of T can be computed as follows:

#ϕ−1(T ) =
n ∏︂

i=1
σi(T ), (21)

where σi(T ) is defined by

σi(T ) =
{︄

i− col1(Ti) + 1, if i is in the first column of T ;
colk(Ti) − colk+1(Ti) + 1, if i is in the (k + 1)-th column of T , where k ⩾ 1.

We call σi(T ) the g-index of the element i. Then we have

(cD)nc =
∑︂

T∈SYT (n)

#ϕ−1(T )w(T ) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )cwi(T )

i

)︄
cn+1−ℓ(λ(T )). (22)
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Proof. In order to prove (21), we need to count the possible positions of each entry i of 
p ∈ ϕ−1(T ). We distinguish two cases:

(i) Suppose that i is the r-th entry in the first column of T . Then r = col1(Ti). In Ti, 
the entry i is the maximum. By the box sorting algorithm, we see that there are 
i− (r − 1) ways to insert i, and each insertion generates an element of OWPi. See 
Table 1 for an illustration.

(ii) Suppose that i is the r-th entry in the (k + 1)-th column of T , where k ⩾ 1. Then 
r = colk+1(Ti). In Ti, the entry i is the maximum. By the box sorting algorithm, we 
find that there are colk(Ti) − (r − 1) ways to insert the entry i, and each insertion 
generates an element of OWPi.

Continuing in this way, we eventually recover all the elements in OWPn. By the multi
plication principle, we get (21). Combining (20), (21) and Lemma 21, we arrive at (22), 
and hence the proof is complete. □
Remark 24. The definition of g-index was first introduced in [26, p. 1443]. It should be 
noted that (22) only implicitly follows from [26, Lemma 3.1], which was obtained by 
using a relationship between k-Young tableaux and standard Young tableaux. In this 
paper, with the aid of box sorting algorithm, we give an adequate explanation for the 
definition of g-index. Moreover, in Definition 30, we introduce the second-order g-index.

By an elusive relationship between k-Young tableaux and standard Young tableaux, 
the following two results have been obtained in [26]. We give a direct proof of them for 
our purpose.

Corollary 25 ([26, Theorem   2.11]). We have

An(x) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )

)︄
xℓ(λ(T )).

Proof. Let G = {x → x, y → x}. Note that Proposition 7 can also be restated as

(yDG)n(y)|y=1 = An(x).

Taking c = y in (22), we get ci = Di
G(c) = Di

G(y) = x for i ⩾ 1. It follows from (22) that

An(x) =
∑︂

T∈SYT(n)

(︄
n ∏︂

i=1
σi(T )cwi(T )

i

)︄
cn+1−ℓ(λ(T ))

⃓⃓⃓⃓
c=y=1, ci=x

=
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )

)︄
x
∑︁n

i=1 wi(T )
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=
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )

)︄
xℓ(λ(T )). □

Corollary 26 ([26, Theorem   2.10]). We have

Cn(x) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )i!wi(T )

)︄
xn+1−ℓ(λ(T )).

Proof. Let G = {x → y2, y → y2}. From Example 9, one can easily verify that

(xDG)n(x) = y2n+1Cn

(︃
x

y

)︃
. (23)

Taking c = x, then ci = Di
G(c) = Di

G(x) = i!yi+1 for i ⩾ 1. By (22), we get

Cn(x) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )cwi(T )

i

)︄
cn+1−ℓ(λ(T ))

⃓⃓⃓⃓
c=x, ci=i!yi+1, y=1

,

which yields the desired result. This completes the proof. □
In the next subsection, we first give several new applications of Theorem 23, and then 

we provide a variant of it.

4.3. Further investigations involving Theorem 23

The type B Eulerian polynomials Bn(x) satisfy the recurrence relation

Bn(x) = (2nx + 1 − x)Bn−1(x) + 2x(1 − x) d 
dxBn−1(x),

with B0(x) = 1 (see [5, Theorem 3.4]). Here we give an expression of Bn(x).

Theorem 27. Let c2i−1 = 4i−1(1 + x) and c2i = 4i
√
x for i ⩾ 1. We have

Bn(x) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )cwi(T )

i

)︄
x

1
2 (n−ℓ(λ(T ))).

Proof. From Example 10, we see that xBn(x2) = (xyDG)n(xy)|y=1, where G = {x →
y, y → x}. Taking c = xy, we notice that

c2i−1 = D2i−1
G (c) = 4i−1(x2 + y2), c2i = D2i

G (c) = 4ixy for i ⩾ 1.

By (22), we find that
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Table 2
The computation of C3(x) = x + 8x2 + 6x3.

T σi(T ), wi(T ) enumerator

3
2
1
0 1 2 3

=⇒ σ1(T )=σ2(T )=σ3(T )=1
w1(T )=w2(T )=0, w3(T )=1 x + 4x2 + x3

3
2
1 2
0 1 3

=⇒ σ1(T )=σ2(T )=1, σ3(T )=2
w1(T )=w2(T )=1, w3(T )=0 2x(x + x2)

3
2
1 3
0 1 2

=⇒ σ1(T )=σ2(T )=1, σ3(T )=2
w1(T )=w2(T )=1, w3(T )=0 2x(x + x2)

3
2 3
1 2
0 1

=⇒ σ1(T )=σ2(T )=σ3(T )=1
w1(T )=3, w2(T )=w3(T )=0 x3

xBn(x2) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )cwi(T )

i

)︄
cn+1−ℓ(λ(T ))

⃓⃓⃓⃓
c2i−1=4i−1(x2+y2), c2i=4ixy,

c=xy, y=1

=
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )cwi(T )

i

)︄
xn+1−ℓ(λ(T ))

⃓⃓⃓⃓
c2i−1=4i−1(1+x2), c2i=4ix

,

which yields the desired result. □
We can now give an affirmative answer to Problem 1.

Theorem 28. We have

Cn(x) =
∑︂

T∈SYT (n)

n ∏︂
i=1

σi(T )Ai(x)wi(T )
.

Proof. From Example 9, we see that if G = {x → xy, y → xy}, then

(yDG)n(y) = y2n+1Cn

(︃
x

y

)︃
. (24)

Taking c = y, by Proposition 7, we see that ci|y=1 = Di
G(y)|y=1 = Ai(x) for i ⩾ 1. 

By (22), we find the desired formula. See Table 2 for an illustration. □
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1
0 1

2̄
2
1̄
1
0 1 2

2̄
2
1̄
1 2
0 1

2̄
2
1̄ 2
1
0 1

Fig. 4. The illustrations of (c2D) c = c2c1 and (c2D)2 c = c4c2 + 2c3c21 by using YWCT. 

Let SYT (n; k) be the subset of SYT (n) with at most k columns.

Theorem 29. For the trivariate second-order Eulerian polynomials, we have

Cn+1(x, y, z) =
∑︂

T∈SYT (n;3)

(︄
n ∏︂

i=1
σi(T )

)︄
c1

w1(T )c2
w2(T )6w3(T )(xyz)n+1−ℓ(λ(T )),

where c1 = xy + yz + xz and c2 = 2x + 2y + 2z. In particular, setting y = z = 1, we 
obtain that

Cn+1(x) =
∑︂

T∈SYT (n;3)

(︄
n ∏︂

i=1
σi(T )

)︄
(1 + 2x)w1(T )(4 + 2x)w2(T )6w3(T )xn+1−ℓ(λ(T )).

Proof. It follows from (10) that (xyzDG)n(xyz) = Cn+1(x, y, z), where

G = {x → 1, y → 1, z → 1}.

Setting c = xyz, we get that c1 = xy+yz+xz, c2 = 2x+2y+2z, c3 = DG(2x+2y+2z) =
6, and ci = 0 for i ⩾ 4. Substituting c = xyz, c1 = xy + yz + xz, c2 = 2x + 2y + 2z, 
c3 = 6, and ci = 0 for i ⩾ 4 into the following expression:

Cn+1(x, y, z) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
σi(T )cwi(T )

i

)︄
cn+1−ℓ(λ(T )),

we obtain the desired formula. This completes the proof. □
In the sequel, we shall provide a variant of Theorem 23. Note that (c2D)nc can be 

rewritten as follows:

(︁
c(2n)c(2n−1)D(n)

)︁ (︁
c(2n−2)c(2n−3)D(n−1)

)︁
· · ·

(︁
c(4)c(3)D(2)

)︁ (︁
c(2)c(1)D(1)

)︁
c(0).

Let OWPn denote the collection of ordered weak set partitions of [n] into 2n+ 1 blocks, 
i.e., [n] = B0 ∪B1 ∪B1 ∪B2 ∪B2 · · · ∪Bn ∪Bn, and for which the following conditions 
hold: (a) 1 ∈ B0; (b) if Bi or Bi is nonempty, then its minimum element larger than i. 
See Fig. 4 for illustrations. 
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T ∈ SYT (3) 3̄
3
2̄
2
1̄
1
0 1 2 3

3̄
3
2̄
2
1̄
1 3
0 1 2

3̄
3
2̄
2
1̄
1 2
0 1 3

3̄
3
2̄
2
1̄ 3
1 2
0 1

∏︁3
i=1 δi(T ) 1 4 4 6

w(T ) c6c3 c5c2c1 c5c2c1 c4c31

C3(x) x 4x2 4x2 6x3

Fig. 5. The illustrations of (c2D)3 c = c6c3 + 8c5c2c1 + 6c4c31 and C3(x) = x + 8x2 + 6x3. 

For any p ∈ OWPn, the weight function of the corresponding standard Young tableau 
is defined by

w(T ) = c2n+1−ℓ(λ(T ))
n ∏︂

i=1
c
wi(T )
i . (25)

For T ∈ SYT (n), recall that Ti is the element in SYT (i) obtained from T by deleting 
the n− i elements i + 1, i + 2, . . . , n.

Definition 30. The second-order g-index of the entry i in T is defined by

δi(T ) =
{︄

2i− col1(Ti), if i is in the first column;
colk(Ti) − colk+1(Ti) + 1, if i is in the (k + 1)-th column, where k ⩾ 1.

We call 
∏︁n

i=1 δi(T ) the second-order g-index of T .

In the same way as in the proof of Theorem 23, it is routine to check the following 
result, and we omit the proof for simplify. 

Theorem 31. For n ⩾ 1, we have (c2D)nc =
∑︁

p∈OWPn
w(p) and

(c2D)nc =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
δi(T )cwi(T )

i

)︄
c2n+1−ℓ(λ(T )). (26)

We end this paper by giving the following result. See Fig. 5 for an illustration.
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Theorem 32. Let Cn(x) be the second-order Eulerian polynomials. We have

Cn(x) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
δi(T )

)︄
xℓ(λ(T )).

Proof. From Example 9, we see that let G = {x → x, y → x}, then we have

(y2DG)n(y) = y2n+1Cn

(︃
x

y

)︃
.

Set c = y. Then ci = Di
G(c) = Di

G(y) = x for any i ⩾ 1. Using (26), we find that

Cn(x) =
∑︂

T∈SYT (n)

(︄
n ∏︂

i=1
δi(T )cwi(T )

i

)︄
c2n+1−ℓ(λ(T ))

⃓⃓⃓⃓
c=y, ci=x, y=1

,

which yields the desired result. This completes the proof. □
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