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It is well known that ascents, descents and plateaux are
equidistributed over the set of classical Stirling permutations.
Their common enumerative polynomials are the second-order
Eulerian polynomials, which have been extensively studied
by many researchers. This paper is divided into three parts.
The first part gives a convolution formula for the second-order
Eulerian polynomials, which simplifies a result of Gessel. As
an application, a determinantal expression for the second-
order Eulerian polynomial is obtained. We then investigate
a convolution formula of the trivariate second-order Eulerian
polynomials. Among other things, by introducing three new
statistics: proper ascent-plateau, improper ascent-plateau and
trace, we discover that a six-variable enumerative polyno-
mial over restricted Stirling permutations equals a six-variable
Eulerian-type polynomial over signed permutations. By spe-
cial parametrizations, we make use of Stirling permutations
to give a unified interpretation of the (p, ¢)-Eulerian polyno-
mials and derangement polynomials of types A and B. The
third part presents a box sorting algorithm which leads to a
bijection between the terms in the expansion of (¢D)™c and or-
dered weak set partitions, where c is a smooth function in the
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indeterminate x and D is the derivative with respect to z. Us-
ing a map from ordered weak set partitions to standard Young
tableaux, we find an expansion of (¢D)™c in terms of standard
Young tableaux. Combining this with context-free grammars,
we provide three new interpretations of the second-order Eu-

lerian polynomials.
© 2025 Elsevier Inc. All rights are reserved, including those
for text and data mining, Al training, and similar

technologies.
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1. Introduction

Many polynomials can be generated by successive differentiations of a given base
function, see [29, Section 4.3] for a survey. Here we provide two such polynomials. The
Eulerian polynomials A, (z) first appeared in the following series summation or successive
differentiation:

= .. d\" 1 Ap(z
2k mk:(x@> 1—;5:(1—95)2“' .

k=0

The second-order Eulerian polynomials Cp(x) can be defined by

S e () - 2 @

k=0

where {Z} is the Stirling number of the second kind, i.e., the number of partitions of
[n] :={1,2,...,n} into exactly k blocks, see [9,11]. The polynomials A4, (x) and C,(z)
share several similar properties, including recursions [21,23,33], real-rootedness [25,35]
and combinatorial expansions [14,41]. For example, we have
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Ap(z) =nzAn_1(z) + (1 — x)%An,l(x), Ag(x) =1,

Cpt1(z) = 2n+ 1)2Cp(z) + (1 — x)%C’n(x), Co(z) = 1. (3)

This paper is motivated by the following problem.

Problem 1. Whether there exists a function f,(z1,2,...,z,) such that

Cn(x) = fn(A1(x), A2(), ..., Ap(z)) .

For m = (my,ma,...,my,) € N let n = {1™1,2™m2 ... n™} be a multiset, where
the element 7 appears m; times. A multipermutation of n is a sequence of its elements.
For any word over n, we say that the reduced form of w, written as red (w), is equal to
the word obtained by replacing each of the occurrences of the i-th smallest number in
w with the number . Denote by G, the set of multipermutations of n. We say that a
multipermutation o of n is a Stirling permutation if for each i, 1 < i < n, all letters
occurring between the two occurrences of i are at least i. Denote by Qy, the set of Stirling
permutations of n. When my; = -+ = m,, = 1, the set 9Q,, reduces to the symmetric group
&, i.e., the set of permutations of [n]. When m; = mg = -+ = m,, = 2, the set O,
reduces to the set Q,, (the set of classical Stirling permutations), which is defined by
Gessel-Stanley [23]. Except where explicitly stated, we always assume that all Stirling
permutations belong to Q,,. For example, Q7 = {11} and 9, = {1122,1221,2211}.

For o € Qy, any entry o; is called an ascent (resp. descent, plateau) if o; < ;41
(resp. 0; > 0441, 0; = 0i41), where ¢ € {0,1,2,...,m3 + ma + --- + my} and we set
00 = Omy+matt+mn+1 = 0. Let asc (o) (resp. des (0), plat (o)) be the number of ascents
(resp. descents, plateaux) of o. The Fulerian polynomials can also be defined by

An(IE) = Z l,des(fr) — Z anC(ﬂ') _ i <Z>xk7

TeS, €S, k=0
n
k
see [38] for instance. When o € Q,,, we always set 09 = 09,41 = 0. Gessel-Stanley [23]
found that

where < > are known as the Fulerian numbers. It is well known that A, (z) is symmetric,

C’n(x) = Z xdes(a) — Z l,asc(o—)'

c€Q, o€Qn

The trivariate second-order Eulerian polynomials are defined by

Cn (m, Y, z) = E 3¢ (G)ydes (O’)Zplat (a).
o€EQn

The first few C),(z,y, z) are listed as follows:
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Cl(xu Y, Z) = TY=z, Cg(l',y,Z) = (I?yZ(yZ +zy + (EZ)7
Cs(x,y, 2) = xyz(z?y?® + 2222 + 9?22 + 4oy 2 + 42yz + dxy2?).

Set Co(z,y, z) = x. Dumont [19, p. 317] discovered that

0 0 0
Cn+1(90,y72) = TYz (% + a_y + a) Cn(xvy,z)a (4)

which implies that the polynomials Cy,(x,y, z) are symmetric in the variables x,y and
z. It was independently discovered by Béna [4] that Cp(2) = >, o 2P0 (9) Tn recent
years, there has been considerable study on Stirling permutations and their variants,
see [8,15,22,25,30,33,34,36,38,39).

Note that each nonempty Stirling permutation ¢ € Q, can be represented as
o'16”1c", where o', ¢” and ¢”' are all Stirling permutations (may be empty). Clearly,
the descent number of o is the sum of the descent numbers of ¢/, ¢/ and o', unless
1

o’ is empty in which case o has an additional descent. Motivated by this observation,
Gessel [24] found that

%C’(w;z) = C%(x;2)(C(z;2) + — 1),

where C(z;2) = Y07 Cn(x)% Extracting the coefficient of %, one can easily deduce
that

Our point of departure is the following problem.
Problem 2. Whether there is a simplified version of (5)?

A partition of n is a weakly decreasing sequence of nonnegative integers: A =
(A1, A2, ..., Ar), where Zle Ai = n. Each ); is called a part of A\. If X\ is a partition
of n, then we write A F n. We denote by m; the number of parts equal to i. By using
the multiplicities, we also denote A by (122 ...n™n). The length of A, denoted ¢(X),
is the maximum subscript j such that A; > 0. The Ferrers diagram of A is a graphical
representation of A with \; left justified boxes in its ¢-th row. For a Ferrers diagram
A F n (we will often identify a partition with its Ferrers diagram), a standard Young
tableau (SYT, for short) of shape A is a filling of the n boxes of A with the integers in
[n] such that each of those integers is used exactly once, and all rows and columns are
increasing (from left to right, and from bottom to top, respectively), and we number its
rows starting from the bottom and going above. See [1] for instance.
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Let SYT) be the set of standard Young tableaux of shape A. Set SYT (n) =
Usrrn, SYT,. The descent set for T' € SYT (n) is defined by

Des(T) = {i | i + 1 appears in an upper row of 7' than ¢, where 1 < i <n — 1}.

Denote by #V the cardinality of a set V. Let des(T') = # Des(T"). The Robinson-
Schensted correspondence is a bijection from permutations to pairs of standard Young
tableaux of the same shape. This correspondence and its generalization, the Robinson-
Schensted-Knuth correspondence, have become centerpieces of enumerative and algebraic
combinatorics due to their many applications. Let f» = # SYT). An application of the
Robinson-Schensted correspondence is given as follows:

An(l‘) _ Z pdes () — Zf)\ Z pdes (T)Jrl7 (6)

TeS, AFn TeSYTy

which has been extended to skew shapes. See [1,28] for instance.

This paper is organized as follows. In the next section, we present a result concerning
Problem 2. In Section 3, we investigate a convolution formula for the trivariate second-
order Eulerian polynomials C,,(x,y, z). A deep connection between signed permutations
in the hyperoctahedral group and Stirling permutations is established. In particular, we
introduce three new statistics on Stirling permutations: proper ascent-plateau, improper
ascent-plateau and trace. A special case of Corollary 18 says that

fix ()
Z Simpap(o’)tbkg (a)qtr(a) —on Z (t + 5) qcyc (m)
2 9

UGQS}A TEGn

where QS) is the set of Stirling permutations over the multiset {1,2,2,3,3,...,n,n}. In
Section 4, using standard Young tableaux, we provide certain combinatorial expansions
of the Eulerian polynomials of types A and B as well as the second-order Eulerian
polynomials. In Theorem 28, we give an affirmative answer to Problem 1, i.e.,

Culw) = > JLou@Ai(x)™ ™,
TESYT (n) i=1
where w;(T) is the number of rows in the standard Young tableau T" with ¢ elements and
[T, 0i(T) is the g-index of T introduced in [26]. See Table 2 for an illustration.

2. Convolution formulas for the second-order Eulerian polynomials

Since des and plat are equidistributed over Stirling permutations in Q,,, it is natural
to count Stirling permutations by the plateau statistic plat. We now present a variant
of (5).
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Theorem 3. For n > 1, we have

Con(2) = nzCr1(z) + nf ( " )Cn_r(:v)C’r_l(:E).

p— n—r—+1

Proof. Let o be a Stirling permutation in @,,. Consider a decomposition of o: ic’ic”,
where ¢’ and ¢” are both Stirling permutations (may be empty). We distinguish two
cases:

(i) If o begins with the plateau ii, i.e. ¢’ = ), then there are n choices for i. When we
count the number of plateaux of o, this case gives the term nzC),_1(x).
(11) When ¢’ # (), choose a multiset

{a'la ai,az,az, ..., an—r+1y a?L—T+1}
in (nf;H) ways, where 1 < 7 = a1 < as < -+ < Gp_pt1 < N. Let S, be
the set of Stirling permutations over {as,as,as,as,...,an—r41,0n—rt1}, and let

o’ € S,_,. If we count the number of plateaux of ¢’, then S,,_, contributes to the
term C,,_, (7). Let S,_1 be the set of Stirling permutations over {1,1,2,2,...,n,n}\
{ay,a1,a2,as,...,0n_r11,0n_ry1}. Then red (6”) € Q,_; and S,_; contributes to
the term C,._1(z).

The aforementioned two cases exhaust all the possibilities, and this completes the
proof. 0O

Let a, = 2"C),(1/2). It follows from Theorem 3 that

n—1

n
ap = Nap—1 + 2; (n 4 1>an_7~ar-1, ap =a; = 1.

It should be noted that a,, counts series-reduced rooted trees with n+1 labeled leaves [44,
A000311]. The first few a, are 1,4,26,236,2752. Very recently, Bitonti-Deb-Sokal [2]

obtained a continued fraction expression of a,,.

Lemma 4 ([35]). Let F(z) = a(z)f(z) + b(z) L f(z), where a(z) and b(z) are two real
polynomials. Both f(x) and F(x) have only positive leading coefficients, and deg F' =
deg f or deg f + 1. If f(x) has only real zeros and b(r) < 0 whenever f(r) = 0, then
F(z) has only real zeros.

Combining (3) and Lemma 4, one can obtain that the zeros of C,,_1(z) are real and
simple, which separate those of C,,(z) for n > 2. Comparing (3) with Theorem 3, we
find that
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n—1

(n—r+1> n—r(2)Cr (@) = (n_1)$Cn—1($)+$(1—Cﬂ)%cn,l(x),

r=1
Note that
n—1 n
> R T
n—1
=nCh— 1 Z( _1) n— r(x)cr 1(37)
r=1
n—2 n
= ncn_l(l‘) + (k) Cn_k_l(x)Ck(z)
k=0
n—1 n
= (k) Ck(m)Cn,k,l(x).
k=0
Then

n—1 n d
kzzo (k> Cr(@)Cn—1(2) = (n+ (n = D)2)Cra (@) + 2(1 = 2) - Cor (2).

Therefore, by Lemma 4, we immediately get the following result.
Proposition 5. The binomial convolutions ZZ;& (2)Cr(2)Cp—g—1(x) have only real zeros.

The n x n lower Hessenberg matriz H, is defined as follows:

h11 h12 0 cee 0 0
hai has has -+ 0 0
hs31 h32 hss -+ 0 0
Hn = . . . . . . Pl
hn—l,l hn—1,2 hn—l,S e hn—l,n—l hn—l,n
hn,l hn,2 hn,3 U hn,nfl hn,n

where h;; = 0 if j > i 4 1. Hessenberg matrices frequently appear in numerical analy-
sis [10,32]. Setting Hy = 1, Cahill et al. [10] gave a recursion for the determinant of the
matrix H,, as follows:

n—1 n—1
det Hy = hppdet Hy oy + > | (=1)" "hnp [ [ hjjerdet Hoy | . (7)
r=1 Jj=r

By induction, comparing (7) and Theorem 3, we discover the following result.
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Theorem 6. For any n > 1, the polynomial Cy,(z) can be expressed as the following lower
Hessenberg determinant of order n:

C1(z) (D) -1 0 0

Cy(x) 1) Ci(x) 5 0 0
Cpz(z) ("7 1)Cs(@) ("3)Cnoalx) -+ (17))z -
Cnfl(x) (TIL) Cnfg(.’l,') (S)Cn*?’(x) T (niQ)Cl ({L’) ('niLl):l7 nxn

When n = 4, from Theorem 6, we see that

T -1 0 0

2 -1 ,
22 N, 91 =z + 2222 + 582° + 242,

x4 822 4 6z° 4x+8z% 6z 4z

04 (SC) =

3. A class of restricted Stirling permutations and signed permutations
3.1. Context-free grammars and a new differential operator method

A context-free grammar (also known as Chen’s grammar [12,20,38]) G over an alpha-
bet V is defined as a set of substitution rules replacing a letter in V' by a formal function
over V. The formal derivative D¢ with respect to G satisfies the derivation rules:

Dg(u+v) = Dg(u) + Dg(v), Dg(uv) = Dg(u)v + uDg(v).

So the Leibniz rule holds:

D2 (uv) g:() (w) D" (v).

In [20], Dumont obtained the grammar for Eulerian polynomials by using a grammat-
ical labeling for circular permutations.

Proposition 7 ([20, Section 2.1]). Let G = {a — ab,b — ab}. For any n > 1, one has

b
D%(a) = DA(b) = a" A, (—) .
a
In the following three examples, we introduce a new differential operator method,
which will help us to find grammars. We first establish a connection between (1) and
Proposition 7.
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Example 8. Setting

1
d = and b = z ,
dx - 11—

we obtain T'(a) = T'(b) = ab. By (1), we have T"(a) = Dg(a), where G = {a — ab,b —
ab}.

The grammar for the second-order Eulerian polynomials was first discovered by Chen-
Fu [13] by using a grammatical labeling for Stirling permutations. Here we give a formal
derivation.

Example 9. Setting

R d T 1
T 1—zde’ 1—2a’ 1—2a’

T

we get T'(a) = ab® and T(b) = ab®. Let G = {a — ab?, b — ab?}. It follows from (2)
that

D%(a) = T™(a) = b*"*1C, (%) .

Following [29, p. 29], one has

(d)” o/ B,(e) @

@ 1— o2y (1 _ er)n+1’

where B, (x) are the type B Eulerian polynomials. Note that % = g—;% and r = eY is

the solution of z = g—z. It follows from (8) that

(%)n 1 :EmZ - (1x137;(2:§i)+1' ©)

We now deduce the grammar for the type B Eulerian polynomials.

Example 10. Setting

T 1
T=2x—, a = — 9
dz V1= 22 V1 — 22

we get T'(a) = ab?, T(b) = a?b. Let G = {a — ab?, b — a?b}. It follows from (9) that

and b =

n mn n a2
DZ(ab) = T"(ab) = ab®" ' B, <b—2> .
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In equivalent forms, Dumont [19], Haglund-Visontai [25], Chen-Hao-Yang [16] and
Ma-Ma-Yeh [38] all showed that

Dé(x) = Dgy) = Dg(2) = Cu(,y, 2), (10)

where G = {z — zyz, y — zyz, z — xyz}. By the change of grammar u = z+y+z, v =
xy+yz+zx and w = xyz, it is easy to verify that Dg(u) = 3w, Dg(v) = 2uw, Dg(w) =
vw. So we get a grammar H = {w — vw,u — 3w,v — 2uw}. Recently, Chen-Fu [14]
discovered that for any n > 1, one has

Cy(x,y,2) = Dg(z) = DY H(w) = Z Vi pu I w®,
i+2j+3k=2n+1

where the coefficient v, ; j 1 equals the number of 0-1-2-3 increasing plane trees on [n]
with k leaves, j degree one vertices and i degree two vertices. Substituting v — = +y +
z, v = xy +yz + zx and w — xyz, one has

Calwy )= S0 Amagnle+y+2) oy +yz + 22) (ay2)",
i+2j+3k=2n+1

which has recently been generalized to a seventeen-variable polynomial [41, Theorem 15].
3.2. A class of restricted Stirling permutations

The following fundamental result will be used in our discussion.

Lemma 11. Let G = {z — zyz, y — xyz, z — xyz}. Then we have

Dg(yz) _ Z xplat (U)ydes (U)Zasc (0)’ (11)
UEQ;,Q1
where Q;l_il is the set of Stirling permutations over the multiset {1,2,2,3,3,...,n,n,n+

1,n+1}, d.e., the element 1 appears only once and the other elements appear two times.

Proof. We first introduce a grammatical labeling for o € QSJA as follows:

(L1) If 0; is a plateau, then put a superscript label z right after o;.
(Lo) If 0; is a descent, then put a superscript label y right after o;;
(Ls) If 0; is an ascent, then put a superscript label z right after oy;

The weight of o is given by w(o) = xP12t (7)ydes (@) zase(9) When n = 0, we have le) =
{#1¥}, which corresponds to yz. When n = 1, we have Qél) = {#17272¥ 7 272v1¥} which
corresponds to D¢ (yz) = x(y*z + yz?). When n = 2, the weighted elements in le) can
be listed as follows:
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2172702373V, 1727373UQY, *173%3Y27Y, *373V17272Y
Z9UQU1Z3T3y  FQTQI3TIVY 23TV Z3T3UQTQULY,

The sum of weights of these elements is given as follows:

D%(yz) = 2?y32 + da®y? 2 + ay2? + 2%y2® + 2?23
So the result holds for n = 0,1, 2. We proceed by induction. Suppose we get all labeled
Stirling permutations in QS_)l, where n > 3. Let ¢’ be obtained from o € Q;lzl by
inserting the pair nn. Then the changes of labelings are illustrated as follows:

X Z T .
..a‘io'i_‘_l...}_)...a'innygi+1...7

Y 2T .
.O-io.i-'rl'."_).'.o-in nyo'i_'_l...’

z Z 2T
"Uiai+1.'.'_>'.'oin nyo—i+1....

In each case, the insertion of the string nn corresponds to the operator Dg. By induction,
the action of the formal derivative D¢g on the set of weighted Stirling permutations in
lelll gives the set of weighted Stirling permutations in Q' and so (11) holds. O

Define

En(x, v, Z) _ Z xplat (o) ydes (U)Zasc (o) )

el
By (11), we see that
E,i1(z,y,2) =zyz 2—1—3—1—3 E.(z,y,z2), Ei(z,y,2) = yz (12)
n+1\Z, Y, =Ty ox 8y 9z n\T; Y, %), 1L, Y, = Y=z.

Let En(2,y,2) = > is1 51 E, i jaty? 22773 for n > 2. It follows from (12) that
Eni1j=1Enij1+jEni-1;+2n—i—3j+2)Eyi1-1, (13)
with E1,071 =1 and El,i,j =0 for all (Z,j) 7& (0, 1) By (10), we find that
n S n n—k . n —
Cunrlo.302) = Dtan) = 3 () Db @D 2) = 3 () Culenn D H02)
k=0 k=0

So the following result is immediate.

Theorem 12. We have

n

n
On+1(z7yaz) = Z (k) Ck(%yaZ)En—kH(I,va)-

k=0
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It is routine to check that #QSJ)FI = E,+1(1,1,1) = (2n)!l. Let £[n] = [n] U
{1,2,...,m}, where we denote by 7 the negative element —i. The hyperoctahedral group
G5 is the group of signed permutations on +[n] with the property that 7 (i) = — (i)
for all i € [n]. It is well known that #&2 = (2n)!! (see [5,41]). Therefore,

1
#O(, = #67.
A natural idea is therefore to investigate the connections between Qfllll and 65 .
3.8. Siz-variable polynomials over restricted Stirling permutations

Let w = wyws - - - w, be a word of length n, where w; are all integers. Except where
explicitly stated, we always assume that wyg = wy,+1 = 0. Let

Ap(w) ={w; | wi—1 < w; = w1 &2<i<n—1},

Lap(w) = {w; | wi—1 <w; = w41 & 1<i<n—1}

be the sets of ascent-plateaux and left ascent-plateaux of w, respectively. Let ap (w) and
lap (w) be the numbers of ascent-plateaux and left ascent-plateaux of w, respectively.
The ascent-plateau polynomials and the left ascent-plateau polynomials on Stirling per-
mutations are respectively defined by

M, (z) = Z xap(a)’ W(z) = Z 21ap (0)

0€Qn c€EQy

From [37, Proposition 1], we see that

2" A, (z) = zn: <’Z) Wi(2)Wn_i(z), Bn(z) = Zn: (’;) Mi(z) W, (),

=0 =0

where B,,(z) is the type B Eulerian polynomial over the hyperoctahedral group &5.

Let 7 = n(1)7(2) - --7(n) € &E. It should be noted that the n letters appearing in
the cycle notation of 7 are the letters m(1),7(2),...,7(n). We say that i is an excedance
(resp. anti-excedance, fized point, singleton) of wif w(|7(i)]) > 7(i) (vesp. (|7 (3)|) < 7 (3),
7(i) =14, 7(i) = 4). Let exc () (resp. aexc (7), fix (), single (), neg (7), cyc (7)) be the
number of excedances (resp. anti-excedances, fixed points, singletons, negative entries,
cycles) of .

Example 13. The signed permutation 7 = 683157249 can be written as (9)(3)(1,6,7, 2,8,
4)(5). So 7 has two singletons 9 and 3, one fixed point 5, 3 excedances, 3 anti-excedances,
3 negative entries and 4 cycles.
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According to [5, Corollary 3.16], we have

Bn(JZ) _ Z 2EXC (0)+single (o) _ Z pexe (o)+fix (o').
TeGE T€SE

Lemma 14 ([/0, Lemma 5.3]). Let p and q be two given parameters. If
G={I = ql(t+sp),s = (L+p)ey,t = (L+play,z = (1 +p)ry,y — (1 +p)ry}, (14)
then we have

DZ«(I) -7 Z 2% (o')yacxc (o) Ssinglc (U)tﬁx (a')pncg (a')qcyc (o) )
ceSE

For a word w = wyws - - - w,, we have the following definitions:

e An even indexed entry of w is an element w; such that the first appearance of w;
(when we read w from left to right) occurs at an even position;

o A right-to-left minimum of w is an element w; such that w; < w; for every j €
{i4+1,i4+2,...,n} and w; is the first appearance from left to right;

o A left-to-right minimum of w is an element w; such that w; < w; for every j €
{1,2,...;i—1}ori=1;

e A block of w is defined as a maximal substring that begins with a left-to-right mini-
mum and contains no other left-to-right minimum.

Let Even(w) and Rlmin(w) be the sets of even indexed entries and right-to-left minima
of w, respectively. For instance,

Even(4554122377366) = {2, 3,5,6}, Rlmin(4554122377366) = {1,2,3,6}.

It is easily derived by induction that w has a unique decomposition as a sequence of
blocks. For o € Q% , there exists one block beginning with the element 1. For exam-
ple, the block decomposition of 88346643991255277 is given by [88][34664399][1255277].
We use even (o), rlmin(o), Irmin(o) and bks(o) to denote the numbers of even indexed
entries, right-to-left minima, left-to-right minima and blocks of size exactly 2 of o, re-
spectively. When o; and 0,4 constitute a block with size exactly 2, it is clear that
0; = 0i41. For example, bky(33221) = 2. The block statistic has been studied by Kuba-
Panholzer [33] and Remmel-Wilson [42].
We now introduce three new statistics.

Definition 15. For ¢ € QS), we say that an entry o; is

e a proper ascent-plateau if o; is an ascent plateau, but it is not a right-to-left minimum;
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e an improper ascent-plateau if o; € Ap(o) N Rlmin(o);

o a trace if there exists 2 < k < n, when the subword of o restricted to {1,2,2,...,k, k},
o; is an improper ascent-plateau of this subword or o; is the second entry that appears
in a block of size exactly 2.

Let Pap(o),Impap(o) and Trace(o) be the sets of proper ascent-plateaux, improper
ascent-plateaux and traces of o, respectively. For instance,

Pap(884554122377366) = {5,7},
Impap(884554122377366) = {2, 6},
Trace(884554122377366) = {2, 3,4, 6, 8}.

It is clear that
AP(o) = Pap(c) UImpap(c), Pap(c) NImpap(c) = .

We use pap(o) and impap(o) to denote the numbers of proper and improper ascent-
plateaux of o, respectively. Hence ap (o) = pap(c) + impap(c). The complement index
of ascent-plateaux of o is defined by

cap(o) =n — pap(o) — impap(o) — bke(c) = n — ap (o) — bka (o).
We can now conclude the main result of this section.

Theorem 16. We have

Z xpap(o)ycap(a)simpap(a)tbkg(a)peven (Tr)qtr(a)
(A lelll
— Z 2XC (Tr)yaexc (Tr)ssingle (T()tﬁx (w)pneg (T()quC (7r).

TeSE

Proof. Recall that lel) is the set of Stirling permutations over the multiset {1, 2,2, 3, 3,
...,n,n}. A grammatical labeling for o € lel) is given as follows:

(L1) we use the superscript I to mark the first position (just before o) and the last
I

position (at the end of &), and denoted by Em;

(Lo) if o; is a proper ascent-plateau, then we label the two positions just before and
right after o; by a subscript label z;

(L3) if o; is an improper ascent-plateau, then we label the two positions just before and
right after o; by a subscript label s;
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(L4) if 0; and ;41 constitute a block with size exactly 2, then we label the two positions
just before and right after o;1 by a subscript label ¢;

(Ls) except the above labeled positions, there are still even number of positions, and we
use a y to label pairwise nearest elements from left to right;

(Lg) we attach a superscript label p to every even indexed entry;

(L7) we attach a subscript label ¢ to each trace.

With this labeling, the weight of ¢ is defined as the product of the labels, i.e.,

w(a) — xpap(a)ycap(o)Simpap(a)tbkg(a)peven (Tr)qtr(o) )

For example, the grammatical labeling for 884554122377366 is given as follows:

I
Yy )
~ =~ ——
8 8 457 574, 120 23" 7 T3 60 6
NG - ~— -
t z s ® s

=~
We proceed by induction. The element in le) can be labeled as 1 . The labeled
elements in Qél) can be listed as follows:

Let G be given by (14). Note that D (I) = ¢I(t + sp). Hence the result holds for n = 1.
Suppose we get all labeled Stirling permutations in o € Qfllzl, where n > 2. Let o
be obtained from o by inserting the string nn. There are six possibilities to label the

inserted string and to relabel some elements of o:

(c1) by the definition of trace, we never need to relabel the subscript label g.
(c2) if nn is inserted immediately before or right after o, then the changes of labelings
are illustrated as follows:

I
I I I
=~ — = /_/\pﬁ
o —=nmng o, "o —onhn.
~—
t s

(c3) if nn is inserted immediately before or right after an element with a label ¢. Since
it forms a block of size 2 which means the entries before ¢ are all bigger than 1,
thus the first ¢ located at an odd position. The changes of labelings are illustrated
as follows:
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Y
BN Zq ...%...annzq ceey e Zq B A qu M Ty .
~~ VN~ ~— —~—
t z y t z

(c4) if nn is inserted immediately before or right after an element with label s, then the
changes of labelings are illustrated as follows:

Y Yy
. Zg Z...;)...npnls Z"', . qu) 7 - — ..Zs n mn1i
T x
S S

(c5) if mn is inserted immediately before or right after an element with label z, then the
changes of labelings are illustrated as follows:

Yy Yy

. Zp Z..._)...npnzp Z"', /Lp z..._>...zp n nz...;
x xT T xT
Y Y

. 7 Qore —> oo n n 7 Z"'7 ce . 7 Qeooe — ool np ny--- .
T x xT x

(cg) if nn is inserted into either position of a pair labeled by y, then the first n always get
a label x and there still two positions get a label y. For each pair of positions labeled
by y, there is an odd number of entries between them. So we get the substitution
rule y — (14 p)zy.

In each case, the insertion of nn corresponds to one substitution rule in G. Therefore,
the action of D¢ on the set of weighted Stirling permutations in Q;lzl gives the set of

weighted Stirling permutations in Q,(ll). So we complete the proof by Lemma 14. O

We now collect several well-studied Eulerian-type polynomials. Let

By, (.’E, b, Q) = Z *¢ (m)+single (‘n’)pneg (W)qcyc (m)
TEGE

be a (p, g)-Eulerian polynomial of type B. The types A and B derangement polynomials
are respectively defined by

dn(x): Z xeXC(ﬂ')7 df(:ﬂ): Z :L,GXC(TK')’

wED, TeDB

where D, = {r € &,, | fix (7r) = 0} and DP = {7 € &7 | fix (7) = 0}. These polynomials
have been extensively studied. See [6,17,27,40] for recent progress.
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Corollary 17. We have

Bn ('ry 2 Q) = Z xap(o')peven (‘n’)qtr(a')’

Uegﬁll«i)»l
dp(z) = Z 2P B () = Z 2Pap(T)
reQll), el
bka(7)=0 bka(7)=0

even (m)=0

The (p, q)-Eulerian polynomials A, (z,p,q) are defined by

An («’E,p, Q) = Z &€ (ﬂ)pﬁx (W)qcyc (7'r)
TES,

Combining [40, Theorem 5.2] and Theorem 16, we get the following result.

Corollary 18. We have

Z xpap(a)ycap(a) Simpap(a)tbkg(a)peven (w)qtr(a) — (1 + p)nynAn (1'7 t+ Sp ’ q) )
ot v y+py
n+1
In particular, we have

Z simpap(a)tbkg(o) _ Z (t+s)ﬁx(ﬂ')2n—ﬁx(7r).

06957,1-2—1 ﬂGGn

4. Box sorting algorithm and standard Young tableaux
4.1. Preliminaries

The Weyl algebra W is the unital algebra generated by two symbols D and U satisfying
the commutation relation DU — UD = I, where I is the identity which we identify with
“1”. Any word w in the letters U, D can always be brought into normal ordered form
where all letters D stand to the right of all the letters U. A famous example of W is
given by the substitutions: D — %, U — x. Except as otherwise indicated, we always
let D = %. As early as 1823, Scherk [3, Appendix A] found that

(zD)" = kzn:_o {Z}ka. (15)

According to [3, Proposition A.2], one has

(ezD)n — "® |:TL:| ch,
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where [Z] is the (signless) Stirling number of the first kind, i.e., the number of permu-
tations in &,, with k cycles. Many generalizations of (15) occur naturally in quantum
physics, combinatorics and algebra. The reader is referred to [43] for a survey of this
topic.

Throughout this paper, we always let ¢ := ¢(z) and f := f(z) be two smooth functions
in the indeterminate z. We adopt the convention that ¢, = D*c and f;, = D* f for k > 0.
Set fy = f and ¢y = ¢, where D = %. The first few (¢D)" f are given as follows:

(eD)f = (Of1, (eD)?f = (ccr)fy + (¢*)fo,
(eD)3f = (cc? + Pex)fy + (3c%c))fy + (),
(D) f = (cc3 +4c?ciea + Bez)fy + (Tc2ed + 4cea)fy + (6¢3cr)f3 + (¢)fy.

For n > 1, we define

(eD)"f = ZFnkfk (16)
k=1
Note that F, , = F,k(c,c1,...,¢n—k) is a function with variables ¢,c1,...,¢ch—. In

particular, Iy 1 = ¢, Fo1 = ccy and Fa o = c2. Clearly, Foi11=cDFy1, F,pn, =c" and
for 2 < k < n, we have the recurrence relation

Fn+1,k = CFn,k—l + CDFn,k-

By induction, Comtet [18] found an explicit formula of F,, ;. Recently, Briand-Lopes-
Rosas [7] gave a survey of the combinatorial properties of F}, , which can be summarized
as follows.

Proposition 19 (/7]). Let F,, i, be defined by (16). There exist positive integers a(n, \)
such that

For= Z a(n, )"~ Ny,
Arn—k

where X runs over all partitions of n — k. The Stirling numbers of the first and second
kinds, and the Eulerian numbers can be respectively expressed as follows:

R A

AFn—k ((N)=n—k

In [26], Han-Ma first gave a simple proof of Comtet’s formula via inversion sequences,
and then introduced k-Young tableaux and their g-indices. Using the indispensable k-
Young tableaux, Han-Ma obtained a unified combinatorial interpretation of Eulerian
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1 2 2

— |1 + 112
0|1

0|12 0|1

Fig. 1. An illustration of the change of weights: cc; — cZco + ccf.

polynomials and second-order Eulerian polynomials. In practice, however, it seems to be
difficult to understand the definition of g-index (see [26, Definition 2.5, Lemma 3.1]). In
order to clarify the nature of g-index, we shall introduce box sorting algorithm in the
next subsection.

4.2. Box sorting algorithm and the nature of g-index

Rota [31] once said “I will tell you shamelessly what my bottom line is: It is placing
balls into boxes”. As discussed before, we always let D = % and ¢ = ¢(x). In order to
study the powers of cD, we shall introduce the box sorting algorithm.

An ordered weak set partition of [n] is a list of pairwise disjoint subsets (maybe empty)
of [n] such that the union of these subsets is [n]. These subsets are called the parts of
the partition. A weak composition « of an integer n, denoted by « = n, with m parts
is a way of writing n as the sum of any sequence a = (g, s, ..., q;) of nonnegative
integers. For o = n, the Young weak composition diagram of a, also denoted by «, is
the left-justified array of n boxes with «; boxes in the i-th row. We follow the French
convention, which means that we number the rows from bottom to top, and the columns
from left to right. The box in the i-th row and j-th column is denoted by the pair
(i,7). A Young weak composition tableau (YWCT, for short) of shape « is obtained by
placing the integers {1,2,...,n} into n boxes of the diagram such that each of those
integers is used exactly once. We will often identify an ordered weak set partition with
the corresponding YWCT . It should be noted that there may be some empty boxes in
YWCT. In the following discussion, we always put a special column of n 4+ 1 boxes at
the left of YWCT or SYT, and labeled by 0,1,2,...,n from bottom to top. See Fig. 1
and Table 1 for instance.

The following label schema is fundamental.

Label schema. Let p be an ordered weak set partition of [n]. We give a labeling of p as
follows. Label the i-th subset by the subscript ¢(;_1), and label a subset with 7 elements
by a superscript ¢;, where ¢ > 1. Moreover, if the i-th subset is empty, we always label
it by a superscript ¢. The weight of p is defined as the product of the superscript labels.

We can rewrite (cD)"c as follows:

(¢t Diny) (¢(n-1)Din—1y) -+~ (¢2)D2)) (cyDawy) (o) (17)

where ¢y = cu) = c and D) = D for all i € [n]. A crucial observation is that
the differential operator D(;) in (17) can only applied to ¢y, where 0 < k < i — 1.
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Table 1
¢~ N(T) = {p € OWP3 |¢(p) = T}, where T € SYT (3).

61

T — 2 count
13] = |3 ({1,2,3% {3 (4D 1
2] 2

1 1

o[1]2]3] o[1]2]3]

% = ;’ + 3 (1, 3% 21 {3 (D, d1h{2,3{}{}H 2
1]2 12 1]2]3]

013 013 0

13 = |3 + B2 {125 31404, dL2h {814 2
2 2 23

1|3 13 1

01]2 of1]2 0[1]2]

3 = 3 ({1}, {2}, {3}.{}) 1
2|3 2|3

1|2 1|2

01 01

When n = 1, we have (cD)c = (c(1yD1)) ¢y = cc1. When n = 2, we have (¢D)%c =
(e D) (ea)Day) eo) = eet + ez,

Next, we introduce the box sorting algorithm, designed to transform a term in the
expansion of (17) into an ordered weak set partition, which can also be represented by
a YWCT. When multiply a new term c(;)D;), the procedure can be summarized as
follows:

» When applying D;) to c(;, it corresponds to the insertion of the element i into the
box with the subscript c(;y;
« Multiplying by c(;) corresponds to the opening of a new empty box {}

c
HON

We now provide a detailed description of the box sorting algorithm. Start with an
C

empty box ({}C(D)). We proceed as follows:

BS1: When n = 1, we first insert the element 1 to the empty box, which corresponds
to the operation D(1)(c()). We then open a new empty box, which corresponds to
the multiplication by c(;). Thus we get ({1}5(10), {}5(1)).

BS2: When n = 2, we distinguish two cases: (i) we first insert the element 2 into the

first box {1}¢! ', which corresponds to apply the operation D(s) to c(p). We then

()’
open a new empty box, which corresponds to the multiplication by c(s); (77) We

first insert the element 2 into the empty box {} which corresponds to apply

(&
ey’
the operation D5 to ¢(1). We then open a new empty box, which corresponds to
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2

S INE: " 3 n 3

NEIE 9 2 23
1 13 1
0[1]2]3] 0[1]2] 0[1]2]

Fig. 2. The insertions of 3 into ({1, 2}2‘(20) s {}2“), {}Zm)'

2
2] -2 + 3 + B
o 2 2 2[3
12 1]2]3] 12
0[1]3] 0[1 0[1

Fig. 3. The insertions of 3 into ({1}5! , {2} {}E(z)).

€(0) <’

the multiplication by c(2y. Therefore, we get the following correspondence between
ordered weak set partitions and their weights:

cfer e ({12} {3, {Jen))s edl & ({13, {2}, ). {34,

The process from BS1 to BS2 can be illustrated by Fig. 1.

If all of the elements [ — 1] have already been inserted, then we consider the
insertion of i, where 7 > 3. Suppose that we insert the element 7 into the k-th box,
which has the label {}ng), where 1 < k < 4. Then this insertion corresponds to
apply D;) to ¢(,_1), and the label of the k-th box becomes {}c(,*, . We then open
a new empty box, which corresponds to the multiplication by ¢(;y. When ¢ = 3,
see Figs. 2 and 3 for illustrations, where each empty box in the first column of a

YWCT corresponds to an empty subset.

Definition 20. Let OWP,, denote the collection of ordered weak set partitions of [n] into
n+ 1 blocks By U B U---U B,, for which the following conditions hold: (a) 1 € By; (b)
if B; is nonempty, then its minimum is larger than i, where 1 < i < n.

Suppose p € OWP,,. It is clear that the (n + 1)-th block B,, must be empty. Denote
by w;(p) the number of blocks in p with ¢ elements. The weight function of p is defined

by

w(p) = [[ . (18)
=0

By the box sorting algorithm, we immediately get the following result.

Lemma 21. For n > 1, we have (cD)"c =} cowp, w(p)-
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Suppose T' € SYT (n). We define w;(T') to be the number of rows in 7" with ¢ elements.
Let £(A\(T)) be the number of rows of T, where A is the shape of T. Then ¢(\(T)) =
St wi(T) and n= Y7, iw;(T). The weight function of T is defined by

w(T) = HL—EN(T) Hc;Ui(T)_ (19)
=1

Let ¢ be the map from OWP,, to SYT (n), which is described as follows:

OS1: For p € OWP,,, let Y be the corresponding YWCT . Reorder the left-justified rows
of Y by their length in decreasing order from the bottom to the top, and delete
all empty boxes.

0S52: Rearrange the entries in each column in ascending order from the bottom to the
top.

In view of (18) and (19), we see that for any p € OWP,,, one has ¢(p) € SYT (n) and

w(p) = w (¢(p)) - (20)

Definition 22. Suppose T € SYT (n). Let ¢~ (T) = {p € OWP,,| ¢(p) = T}. We call
#¢~Y(T) the g-index of T.

Clearly, #¢~3(T) =1 for T € SYT (1) or T € SYT (2). The correspondence between
SYT (3) and OWPs3 is listed in Table 1. For T € SYT (n), let T; be the element in SYT (%)
obtained from T by deleting the n — i elements i+ 1,7+ 2, ..., n. We denote by colg(T;)
the size of the k-th column of T;.

Theorem 23. For T € SYT (n), the g-index of T can be computed as follows:

#6~(T) = [[ oa(D), (21)
i=1
where o;(T) is defined by
o5(T) = i—coly(T;) + 1, if © is in the first column of T';
0] colg(Ty) — colyr1 (T;) + 1, if i is in the (k+1)-th column of T, where k > 1.

We call 0;(T) the g-index of the element i. Then we have

(cD)"c = Z #(ﬁil(T)’w(T) _ Z ( - U,’(T)C;Ui(T)> A HI=LN(T)) (22)

TeSYT (n) TeSYT (n)
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Proof. In order to prove (21), we need to count the possible positions of each entry i of
p € ¢~ 1(T). We distinguish two cases:

(¢) Suppose that i is the r-th entry in the first column of 7. Then r = coly (T;). In T,
the entry ¢ is the maximum. By the box sorting algorithm, we see that there are
i — (r — 1) ways to insert 4, and each insertion generates an element of OWP;. See
Table 1 for an illustration.

(#4) Suppose that i is the r-th entry in the (k + 1)-th column of T', where k£ > 1. Then
r = colg41(T;). In T}, the entry 4 is the maximum. By the box sorting algorithm, we
find that there are colg(T;) — (r — 1) ways to insert the entry ¢, and each insertion
generates an element of OWP;.

Continuing in this way, we eventually recover all the elements in OWP,,. By the multi-
plication principle, we get (21). Combining (20), (21) and Lemma 21, we arrive at (22),
and hence the proof is complete. O

Remark 24. The definition of g-index was first introduced in [26, p. 1443]. It should be
noted that (22) only implicitly follows from [26, Lemma 3.1], which was obtained by
using a relationship between k-Young tableaux and standard Young tableaux. In this
paper, with the aid of box sorting algorithm, we give an adequate explanation for the
definition of g-index. Moreover, in Definition 30, we introduce the second-order g-index.

By an elusive relationship between k-Young tableaux and standard Young tableaux,
the following two results have been obtained in [26]. We give a direct proof of them for
our purpose.

Corollary 25 ([26, Theorem 2.11]). We have
An(z)= Y (H m(T)) NI,
TeSYT (n) \i=1
Proof. Let G = {x — =,y — x}. Note that Proposition 7 can also be restated as
(¥De)" (Y)ly=1 = An(z)-

Taking ¢ = y in (22), we get ¢; = D (c) = D& (y) = x for i > 1. It follows from (22) that

Aa) = Y (Hamcﬁ“m) (D)

TeSYT(n) \i=1 c=y=1, c;i=x

- Z <ﬁgi(T)> iy wi(T)
)

TESYT (n) \i=1
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- 5 (flom) oo o
TESYT (n) \i=1
Corollary 26 (/26, Theorem 2.10]). We have
n
Cn(z) = Z (H Ui(T)i!wi(T)> L 1I—LN(T)
TESYT (n) \i=1

Proof. Let G = {x — y?, y — y?}. From Example 9, one can easily verify that

(xDg)" (x) = y*"+1Cy <§) : (23)

Taking ¢ = z, then ¢; = D (¢) = Di(z) = ily**! for i > 1. By (22), we get

)
c=x, c;=ilytt1l y=1

ACEEDY (Hm(T)cz“*T)) (N

TeSYT (n) \i=1

which yields the desired result. This completes the proof. O

In the next subsection, we first give several new applications of Theorem 23, and then
we provide a variant of it.

4.8. Further investigations involving Theorem 23

The type B Eulerian polynomials B, (x) satisfy the recurrence relation

B,(x) = (2nz+1—x)B,_1(x) + 22(1 — x)%Bn_l(x),

with Bg(x) =1 (see [5, Theorem 3.4]). Here we give an expression of B, (z).

Theorem 27. Let co; 1 = 411 + x) and co; = 4°\/ for i > 1. We have

Bu(x)= ) < oi(T)c;T”i(T)> 23 (=tOD))
) \i=1

TeSYT (n

Proof. From Example 10, we see that 2B, (z?) = (zyDg)"(zy)|y=1, where G = {z —
y, y — x}. Taking ¢ = zy, we notice that

Coi—1 = D?;i_l(c) = 4i_1(x2 + y2), Coi = Dg;l(c) = 4i$y for i > 1.

By (22), we find that
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Table 2
The computation of C3(z) = z + 822 + 62°.

T oi(T), w;(T) enumerator
(3] 01 (T)=04(T)=03(T)=1 2, .3
1 == w (IT():)wQ(zé)io‘ 3153()7"):1 z+4x”
1]
o|1]2]3]
(3] o1 (T)=05(T)=1, o5(T)=2 2
2] = SRS S 20(z +27)
1(2
013
(3] T)=0y(T)=1, o3(T)=2 2
B = HiteS Ao m A U 20(e + %)
13
012
(3] 01 (T)=05(T)=03(T)=1 3

== w,(LT()z)s, 12“(2(%"):353()7"):0 z
213
1(2
0|1

Z H o; (T)C:)i(T) HI—LA(T))

TESYT (n) \i=1

8
oy
3
—
8
[\)
~—
Il

c2i—1=4""1 (2 +y?), c2;=4"ay,
c=zy, y=1

TeSYT (n) \i=1

)
627;71:41’71(14*{1:2), coi=4'x

which yields the desired result. O
We can now give an affirmative answer to Problem 1.

Theorem 28. We have

Co(z) = > [[ou@As(z)" .

TESYT (n) i=1

Proof. From Example 9, we see that if G = {x — zy, y — a2y}, then

(WD) () = " 'C (g) . (24)

Taking ¢ = y, by Proposition 7, we see that ¢;|y—1 = D5 (y)|y=1 = Ai(x) for i > 1.
By (22), we find the desired formula. See Table 2 for an illustration. O
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Fig. 4. The illustrations of (c>D) ¢ = c?c; and (c*D)? ¢ = c*cy + 2¢3¢? by using YWCT.

Let SYT (n; k) be the subset of SYT (n) with at most k columns.

Theorem 29. For the trivariate second-order Eulerian polynomials, we have

1=

n
Conlwyz)= ( oi<T>> 1) ¢y 2D (T) (=MD,
TeSYT (n;3) 1

where ¢c1 = xy + yz + vz and co = 2x + 2y + 2z. In particular, setting y = z = 1, we
obtain that

Coni(r) = (H W)) (1 221 (4 1 22 (D)us (1) 10T,
TeSYT (n;3) \i=1
Proof. Tt follows from (10) that (zyzDg)"(zyz) = Cpy1(z,y, 2), where
G={z—1,y—>1z—1}

Setting ¢ = xyz, we get that ¢y = zy+yz+xz, co = 2x+2y+22, c3 = Dg(2x+2y+22) =
6, and ¢; = 0 for ¢ > 4. Substituting ¢ = zyz, ¢1 = zy + yz + xz, co = 2z + 2y + 2z,
cs =6, and ¢; = 0 for ¢ > 4 into the following expression:

n
Chi1(z,y,2) = Z (H oi(T)cfi(T)> FI-HNT))
TESYT (n) \i=1

we obtain the desired formula. This completes the proof. O

In the sequel, we shall provide a variant of Theorem 23. Note that (c2D)"c can be
rewritten as follows:

(c2m)Czn—1)Dmy) (¢2n—2)C@n-3)D(n-1)) -~ (e D) (c)ca)Day) c)-

Let OWP,, denote the collection of ordered weak set partitions of [n] into 2n + 1 blocks,
ie., [n] = BpUB;UB;UByUBsy---UB,UB,, and for which the following conditions
hold: (a) 1 € By; (b) if B; or B; is nonempty, then its minimum element larger than i.
See Fig. 4 for illustrations.
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Fig. 5. The illustrations of (cr"D)3 c=c%s5 + 8c%cacy + 60405’ and C3(z) =z + 8z? + 6z°.

For any p € OWP,,, the weight function of the corresponding standard Young tableau
is defined by

w(T) = c2nH1—6(\(T)) HC;M(T)' (25)
=1

For T € SYT (n), recall that T; is the element in SYT (i) obtained from T by deleting
the n — i elements ¢ + 1,74+ 2, ..., n.

Definition 30. The second-order g-index of the entry 4 in T is defined by

5:(T) = 2i — coly (T5), if ¢ is in the first column;
) colg(Ty) — ol (T;) + 1, if 4 is in the (k + 1)-th column, where k& > 1.
We call [T, 6;(T) the second-order g-index of T

In the same way as in the proof of Theorem 23, it is routine to check the following
result, and we omit the proof for simplify.

Theorem 31. For n > 1, we have (c?D)"c = > pcowp, W(p) and
(D)= Y (H 6i(T)c;"i(T)> A=), (26)
TESYT (n) \i=1

We end this paper by giving the following result. See Fig. 5 for an illustration.
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Theorem 32. Let Cy,(x) be the second-order Eulerian polynomials. We have

TESYT (n) \i=1

Proof. From Example 9, we see that let G = {z — =, y — x}, then we have

Set ¢ = y. Then ¢; = D& (c) = D& (y) = x for any i > 1. Using (26), we find that

)
c=y, ci=x, y=1

C’n(x) _ Z <H 5Z(T)CZUL(T)> CQTL‘FI*@()\(T))
)

TESYT (n) \i=1

which yields the desired result. This completes the proof. O
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